• Title/Summary/Keyword: DSC measurement

Search Result 170, Processing Time 0.019 seconds

Synthesis of Doped Polymethylphenylsilane Conductive Polymers and their Structure Characteristics (포리메틸페닐실란계 전도성 고분자의 합성과 구조 특성)

  • Yang, Hyun-Soo;Kang, Phil-Hyun;Kim, Jeong-Soo;Ryu, Hae-il;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.954-962
    • /
    • 1996
  • Four kind of polysilanes which had side chains of methyl, phenyl, and mixed structures, were synthesized and modified by doping with iodine. The structural, thermal, and electric characteristics of obtained polymers were systematically observed with iodine, The structural, thermal, and electric characteristics of obtained polymers were systematically observed with FT-IR, UV/VIS, TGA/DTG, DSC, and measurement of electric conductivity. From FT-IR spectra, it was confirmed that the synthesized polysilanes had side chains of methyl, phenyl, and mixed structures. The thermal stabilities of the polymers were found to increase with phenyl substituents. The polysilanes with phenyl side groups showed ${\sigma}-{\sigma}*$ transition absorption at wavelengths longer than 350 nm. The bathochromic shift of polysilanes with phenyl substituents relates probably to the narrowed band gap caused by delocalization of ${\pi}$-electron. The polymers doped with iodine showed multi-step pyrolysis behavior and higher residue compared with that of the undoped polymers. The electric conductivities of the undoped and doped polysilanes were $10^{-5}S/cm$ and $10^{-4}S/cm$, respectively.

  • PDF

Growth of ZnO Film by an Ultrasonic Pyrolysis (초음파 열분해법를 이용한 ZnO 성장)

  • Kim, Gil-Young;Jung, Yeon-Sik;Byun, Dong-Jin;Choi, Won-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.4
    • /
    • pp.245-250
    • /
    • 2005
  • ZnO was deposited on sapphire single crystal substrate by an ultrasonic pyrolysis of Zinc Acetate Dehydrate (ZAH) with carrying Ar gas. Through Thermogravimetry-Differential Scanning Calorimetry(TG-DSC), zinc acetate dihydrate was identified to be dissolved into ZnO above $380^{\circ}C$. ZnO deposited at $380-700^{\circ}C$ showed polycrystalline structures with ZnO (101) and ZnO (002) diffraction peaks like bulk ZnO in XRD, and from which c-axis strain ${\Sigma}Z=0.2\%$ and compressive biaxial stress$\sigma=-0.907\;GPa$ was obtained for the ZnO deposited $400^{\circ}C$. Scanning electron microscope revealed that microstructures of the ZnO were dependent on the deposition temperature. ZnO grown below temperature $600^{\circ}C$ were aggregate consisting of zinc acetate and ZnO particles shaped with nanoblades. On the other hand the grain of the ZnO deposited at $700^{\circ}C$ showed a distorted hexagonal shape and was composed of many ultrafine ZnO powers of 10-25 nm in size. The formation of these ulrafine nm scale ZnO powers was explained by the model of random nucleation mechanism. The optical property of the ZnO was analyzed by the photoluminescence (PL) measurement.

Solvent-Polymer Interactions for Stable Non-Aqueous Graphene Dispersions in the Presence of PVK-b-PVP Block Copolymer (PVK-b-PVP 블록 공중합체의 존재 하에서 안정한 비 수계 그래핀 분산액을 위한 용매-고분자 상호작용에 관한 연구)

  • Park, Kyung Tae;Perumal, Suguna;Lee, Hyang Moo;Kim, Young Hyun;Cheong, In Woo
    • Journal of Adhesion and Interface
    • /
    • v.18 no.3
    • /
    • pp.109-117
    • /
    • 2017
  • Poly(N-vinyl carbazole) (PVK) homopolymer, poly(4-vinylpyridine) (PVP) homopolymer, and PVK-b-PVP block copolymer were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and the polymers were used to prepare non-aqueous graphene dispersions with four different solvents, ethanol, N-methyl-2-pyrrolidone (NMP), dichloromethane (DCM), and tetrahydrofuran (THF). $^1H-$ and $^{13}C-NMR$ spectroscopy, size exclusion chromatography (SEC), and differential scanning calorimetry (DSC) were carried out to confirm the chemical structure of the polymers. Stability of graphene dispersions was measured by on-line turbidity measurement. Time-dependent Turbiscan Stability Index (TSI) values were interpreted in terms of surface tension (${\sigma}$) and solubility parameter (${\delta}$) among solvents, polymers, and graphene. It was confirmed that the solubilities of polymer and surface tension between solvent and graphene affected the dispersion stability of graphene. PVK-b-PVP block copolymer could effectively maintain the low TSI values of graphene dispersions in ethanol and THF, which have been known as poor solvents for graphene dispersions. It can also be noted that DCM shows good dispersion stability comparable to NMP, which has been known as the best solvent for graphene dispersion.

The Effect of Ionic Group and MMA Contents on the Physical Properties of PU/PMMA Hybrids (PU/PMMA Hybrids의 물성에 대한 이온성기와 MMA함량의 영향)

  • Jeong, Chang Nam;Cho, Hang Kyu;Noh, Si Tae
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.575-581
    • /
    • 1997
  • UDs were synthesized from two different polyols(PTMG, PBEAG), ionic chain extender(DMPA), EDA with $H_{12}-MDI$. PU/PMMA hybrids were prepared with free radical polymerization of MMA monomer in MMA-swelled PUD. PUD particle size and film properties were investigated ionic content and polyol type. Mechanical and thermal properties of PU/PMMA hybrid film were studied in terms of PU's ionic content and the venation of PU/PMMA compositions. As DMPA content increased from 2wt% to 10wt% in PUD, particle size of PUD decreased. PUD's particle size with ester type polyol was found to be smaller then ether type polyol used. Phase separation between hard segment(HS) and soft segment(SS) with ionic contents in PU was shown by the thermal, mechanical property measurement. Although the composition of MMA was changed from 0 to 40 wt% in PU/PMMA hybrid, the particle size of the hybrid did not increase. Using the ester type polyol, tensile strength of hybrid was found to increase by 2wt% - 6wt% DPMA content, but as higher content the strength of hybrid decreased. Moreover with the ether type polyol, tensile strength of hybrid was observed to increase by 2wt% - 4wt% DMPA content, while decreasing at higher content. PU and PMMA polymer molecule being mixed in molecular level was confirmed from the pattern of $T_g$ in DSC thermogram.

  • PDF

Synthesis of Fluorine Modified Polyurethane and Surface Modification (불소 변성 폴리우레탄의 합성과 표면 개질)

  • Lim, Chul Hwan;Choi, Hee Sung;Noh, Si Tae
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.913-916
    • /
    • 1999
  • Fluorine modified diisocyanate(FMD) was synthesized from tris(6-isocyanatohexyl)isocyanurate(TIHI) and N-ethyl-N-2-hydroxyethyl-perfluorooctanesulfonamide(HFA). Fluorine modified polyurethane(FMPU) was also synthesized from FMD and poly(tetramethylene) glycol(PTMG). Modified polyurethanes were made by blending FMPU into the polyester type base polyurethane(BPU). Surface and thermal properties of the blended BPU film was measured by contact angle measurement and DSC. As the amounts of FMPU was increased from 0 wt % to 1 wt %, the surface energy was dramatically decreased from 47.82 dyne/cm to 17.64 dyne/cm. But we observed little change of the contact angle with further increase in the amount of the FMPU up to 10 wt %. The data meant that the surface of the blended polyurethanes was hydrophobic due to the surface arrangement of the fluorine containing moiety in FMPU. Phase separation was induced by the incompatibility of FMPU and BPU for the samples having over 5 wt % of FMPU. The thermal analysis data of these samples showed the thermal behavior of the FMPU itself.

  • PDF

Mechanical Properties of PVC Complexes Using Waste-Gypsum (I) (폐석고를 활용한 PVC 복합체 수지의 기계적 물성 (I))

  • Ho, Dong-Su;Park, Young-Hoon;Nah, Jae-Woon;Choi, Chang-Yong;Kim, Myung-Yul
    • Elastomers and Composites
    • /
    • v.37 no.1
    • /
    • pp.7-13
    • /
    • 2002
  • In this study, mechanical properties of PVC complexes containing the gypsum (Namhae Chemical Co.) which contains phosphte, CaO, etc., Pb-species stabilizer, and $CaCO_3$ were investigated as a function or the content. As a result, mechanical properties increased when the gypsum was mixed with PVC at the extent of 8.46wt%. From this result, it is suggested that the gypsum containing phosphate and CaO is compatible with PVC. Thermogravimetric analysis(TGA) showed that pyrolysis started about at $275^{\circ}C$, and residual weight(%) increased with the amount of the gypsum, and differential scanning calorimetry (DSC) showed that $T_m,\;T_g$ had the maximum and minimum value respectively when the gypsum was mixed with PVC at the extent of 8.46wt%. Comparing all the results, both mechanical and thermal properties of PVC complex were improved. The X-ray diffraction measurement also showed their blonds and structures.

Study on the Non-isothermal Crystallization Kinetics of Branched Polypropylene (분지형 폴리프로필렌의 비등온결정화 거동 연구)

  • Yoon, Kyung-Hwa;Shin, Dong-Yup;Kim, Youn-Cheol
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.245-250
    • /
    • 2012
  • Branched polypropylenes (PP) with long chain branch were prepared by solid state reaction with three different branching agent of 0.3 wt% content. The chemical structures, non-isothermal crystallization behavior and complex viscosity of the branched PP were investigated by FTIR, DSC, optical microscope, and dynamic rheological measurement. The chemical structure of the branched PP was confirmed by the existence of =C-H stretching peak of the branching agent at 3100 $cm^{-1}$. There was no distinct change in melting temperature in case of PP-D-0-3 and PP-F-0-3, but PP-H-0-3 indicated a decrease in melting temperature. The decrease in melting temperature was interpreted by the fact that the degradation reaction of PP was more dominant than branched reaction, and confirmed by a decrease in complex viscosity. The non-isothermal crystallization behavior of the branched PP was analyzed using by Avrami equation. The Avrami exponent of PP was 3, and the values of the branched PP with DVB and FS were below 3. The activation energy of PP calculated by Kissinger method was 25 kJ/mol, and there were no big difference in activation energies of the branched PPs compared to PP.

Highly-permeable Mixed Matrix Membranes Based on SBS-g-POEM Copolymer, ZIF-8 and Ionic Liquid (SBS-g-POEM 공중합체, ZIF-8, 이온성 액체에 기반한 고투과성 혼합 매질 분리막)

  • Kang, Dong A;Kim, Kihoon;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.29 no.1
    • /
    • pp.44-50
    • /
    • 2019
  • In this paper, we developed mixed matrix membranes (MMMs) consisting of SBS-g-POEM block-graft copolymer, ionic liquid (EMIMTFSI) and ZIF-8 nanoparticles to separate a $CO_2/N_2$ gas pair. The SBS-g-POEM is a rubbery block-graft copolymer synthesized through low-cost free-radical polymerization. The EMIMTFSI was dissolved into the SBS-g-POEM matrix and solution synthesized ZIF-8 nanoparticles were also dispersed into the copolymer matrix. The physico-chemical properties of manufactured membranes were characterized by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), X-ray diffraction (XRD), which showed that the components were compatible with each other. The gas separation performance was confirmed by time-lag measurements showing $CO_2$ permeability of 537.0 barrer and $CO_2/N_2$ selectivity of 15.2. The result represents the EMIMTFSI and ZIF-8 nanoparticles improves the gas permeability more than two-times, without significantly sacrificing the $CO_2/N_2$ selectivity.

Measurements of Dissociation Enthalpy for Simple Gas Hydrates Using High Pressure Differential Scanning Calorimetry (고압 시차 주사 열량계를 이용한 단일 객체 가스 하이드레이트의 해리 엔탈피 측정)

  • Lee, Seungmin;Park, Sungwon;Lee, Youngjun;Kim, Yunju;Lee, Ju Dong;Lee, Jaehyoung;Seo, Yongwon
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.666-671
    • /
    • 2012
  • Gas hydrates are inclusion compounds formed when small-sized guest molecules are incorporated into the well defined cages made up of hydrogen bonded water molecules. Since large masses of natural gas hydrates exist in permafrost regions or beneath deep oceans, these naturally occurring gas hydrates in the earth containing mostly $CH_4$ are regarded as future energy resources. The heat of dissociation is one of the most important thermal properties in exploiting natural gas hydrates. The accurate and direct method to measure the dissociation enthalpies of gas hydrates is to use a calorimeter. In this study, the high pressure micro DSC (Differential Scanning Calorimeter) was used to measure the dissociation enthalpies of methane, ethane, and propane hydrates. The accuracy and repeatability of the data obtained from the DSC was confirmed by measuring the dissociation enthalpy of ice. The dissociation enthalpies of methane, ethane, and propane hydrates were found to be 54.2, 73.8, and 127.7 kJ/mol-gas, respectively. For each gas hydrate, at given pressures the dissociation temperatures which were obtained in the process of enthalpy measurement were compared with three-phase (hydrate (H) - liquid water (Lw) - vapor (V)) equilibrium data in the literature and found to be in good agreement with literature values.

Purification and Biological Characterization of Wild-type and Mutants of a Levan Fructotransferase from Microbacterium sp. AL-210 (Microbacterium sp. A-210이 생성하는 Levan fructotransferase의 정제 및 생물학적 특성에 관한 연구)

  • Hwang, Eun-Young;Jeong, Mi-Suk;Cha, Jae-Ho;Jang, Se-Bok
    • Journal of Life Science
    • /
    • v.19 no.9
    • /
    • pp.1218-1225
    • /
    • 2009
  • Difractose anhydrides (DFAs) is studied as a sweetener for diabetics because of its structural property. DFAs have four types: DFA I, III, IV (degradation of levan) and V (degradation of inulin). Especially, DFA IV has been shown to enhance the absorption of calcium in experiments using rats. Levan fructotransferase is an enzyme for producing di-d-fructose-2,6':6,2-dianhydride (DFA IV). To identify structural characterization, we purified wild-type and mutants (D63A, D195N and N85S) of levan fructotransferase (LFTase) from Microbacterium sp. AL-210. These proteins were purified to apparent homogeneity by Ni-NTA affinity column, Q-sepharose ion exchange and gel filtration chromatography and detected by SDS-PAGE. They were also analyzed by circular dichroism (CD) measurements, JNET secondary structure prediction, activity measurements at various temperatures, and pH analysis. The optimum pH for the enzyme-catalyzed reaction was pH 7.5 and optimum temperature was observed at $55^{\circ}C$. Along with wild-type LFTase, mutants were analyzed by CD measurement, fluorescence analysis and differential scanning calorimetry (DSC). N85S showed less $\alpha$-helix and more $\beta$ strand than others. Also, N85S showed almost the same curve as wild-type in their steady-state fluorescence spectra, whereas mutant D63A and D195N showed higher intensity than wild-type. The amino acid sequence of wild-type LFTase was compared to the sequences of exo-inulinase from Aspergillus awamori, a plant fructan 1-exohydrolase from Cichorium intybus, and Thermotogo maritime (Tm) invertase and showed a high identity with Exo-inulinase from Aspergillus awamori.