• Title/Summary/Keyword: DSA (dimensionally stable anode)

Search Result 27, Processing Time 0.022 seconds

Removal of endocrine disruptive compounds using dimensionally stable anode (DSA) (불용성 전극(DSA)을 이용한 내분비계 장애물질 제거)

  • Kim, Dong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1368-1373
    • /
    • 2008
  • An electrochemical reactor was designed and operated to treat the solution containing endocrine disruptive compounds such as phenol and bisphenol A. An experiment involving the electrochemical oxidation of bisphenol A was performed with the use of a dimensionally stable anode (DSA). The apparent current, conductivity, and the gap between cathode and anode were selected as design parameters. The phenol removal rate increased with an increase in apparent current. The bisphenol A removal rate increased with an increase in apparent current efficiency. An increase in the conductivity also led to an increase in the rate of removal of bisphenol A. The gap between cathode and anode did not affect the bisphenol A removal rate or the cathodic current efficiency.

A Basic Study on Accelerated Life Test Method and Device of DSA (Dimensionally Stable Anode) Electrode (촉매성 산화물 전극 (DSA, Dimensionally Stable Anode)의 가속수명 테스트 방법과 장치에 관한 기초 연구)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.27 no.6
    • /
    • pp.467-475
    • /
    • 2018
  • The lifetime of the electrode is one of the most important factors on the stability of the electrode. Since the lifetime of the DSA (Dimensionally stable anode) electrode is long, an accelerated lifetime test is required to reduce the test time. Beacuse there is no basis or standard method for accelerated lifetime testing, many researchers use different methods. Therefore, there is a need for basis and methods for accelerated lifetime testing that other researchers can follow. We designed a reactor system for accelerated lifetime testing and planned specific methods. Reactor system was circulating batch reactor. Reactor volume and cooling water tank were 12.5 L and 100 L, respectively. Electrode size was $2cm{\times}3cm$ (real electrolysis area, $5cm^2$). In order to maintain the harsh conditions, accelerated lifetime test was carried out in a high current density ($0.6A/cm^2$) and low electrolyte concentration (NaCl, 0.068 mol/L). Maintaining a constant temperature was an important operation parameter for exact accelerated lifetime test. As the accelerated lifetime test progressed, the active component of electrode surface was consumed and desorption occurred. At the point of 5 V rise, corrosion of the surface of the base material(titanium) also started.

An Updated Review of Recent Studies on Dimensionally Stable Anodes (DSA) (불용성 산화 전극(DSA)의 최신 연구 동향)

  • Park, Su-Ryeon;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • DSA (Dimensionally Stable Anode) electrodes are physically, thermally and electrochemically stable and are mainly Ti electrodes coated by Ru, Ir and Ta. DSA electrodes have been used in many industrial fields such as chlor-alkali, electrochemical water treatment, water electrolysis, etc. This review paper summarizes the study on the applications using DSA electrodes published in the recent 5 years. It suggests that the researches are intensively required on effective screening of electrodes materials, optimal designing of electrode structures and economical manufacturing of large area electrodes. It is expected that these studies will contribute to the further research and development on advanced DSA electrodes. In addition, the enhancement of DSA electrodes significantly leads to expand the type of the application using electrochemical processes in industry.

Influences of Coating Cycles and Composition on the Properties of Dimensionally Stable Anode for Cathodic Protection

  • Yoo, Y.R.;Chang, H.Y.;Take, S.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.45-51
    • /
    • 2006
  • Properties of the anode for cathodic protection need low overvoltage for oxygen evolution and high corrosion resistance. It is well known that DSA (Dimensionally Stable Anode) has been the best anode ever since. DSA is mainly composed of $RuO_2$, $IrO_2$, $ZrO_2$, $Co_2O_3$, and also $Ta_2O_5$, $TiO_2$, $MnO_2$ are added to DSA for better corrosion resistance. The lifetime of DSA for cathodic protection is also one of the very important factors. $RuO_2$, $IrO_2$, $RhO_2$, $ZrO_2$ are well used for life extension, and many researches are focused on life extension by lowering oxygen evolution potential and minimizing dissolution of oxide coatings. This work aims to evaluate the influence of constituents of MMO and coating cycles and $ZrO_2$ coating on the electrochemical properties and lifetime of DSA electrodes. From the results of lifetime assessment in the anodes coated with single component, $RuO_2$ coating was more effective and showed longer lifetime than $IrO_2$ coating. Also, an increased coating cycle and an electrochemically coated $ZrO_2$ could enhance the lifetime of a DSA.

A Review of Chlorine Evolution Mechanism on Dimensionally Stable Anode (DSA®) (DSA 전극에서 염소 발생 메커니즘)

  • Kim, Jiye;Kim, Choonsoo;Kim, Seonghwan;Yoon, Jeyong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.531-539
    • /
    • 2015
  • Chlor-alkali industry is one of the largest electrochemical processes which annually producing 70 million tons of sodium hydroxide and chlorine from sodium chloride solution. $DSA^{(R)}$ (Dimensionally Stable Anodes) electrodes such as $RuO_2$ and $IrO_2$, which is popular in chlor-alkali process, have been investigated to improve the chlorine generation efficiency. Although DSA electrode has been developed with various researches, understanding of the chlorine evolution mechanism is essential to the development of highly efficient DSA electrode. In this review paper, chlorine generation mechanisms are summarized and that of key factors are identified to systematically understand the chlorine generation mechanism. Rate determining step, effect of pH, reaction intermediate, and electrode crystal structure were intensively overviewed as key factors of the chlorine mechanism.

Dye Decomposition in Seawater using Electro-Fenton Reaction (전기-펜톤 반응을 이용한 해수 중의 염료 분해)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.29 no.4
    • /
    • pp.383-393
    • /
    • 2020
  • To increase electrolysis performance, the applicability of seawater to the iron-fed electro-Fenton process was considered. Three kinds of graphite electrodes (activated carbon fiber-ACF, carbon felt, graphite) and dimensionally stable anode (DSA) electrode were used to select a cathode having excellent hydrogen peroxide generation and organic decomposition ability. The concentration of hydrogen peroxide produced by ACF was 11.2 mg/L and those of DSA, graphite, and carbon felt cathodes were 12.9 ~ 13.9 mg/L. In consideration of durability, the DSA electrode was selected as the cathode. The optimum current density was found to be 0.11 A/㎠, the optimal Fe2+ dose was 10 mg/L, and the optimal ratio of Fe2+ dose and hydrogen peroxide was determined to be 1:1. The optimum air supply for hydrogen peroxide production and Rhodamine B (RhB) degradation was determined to be 1 L/min. The electro-Fenton process of adding iron salt to the electrolysis reaction may be shown to be more advantageous for RhB degradation than when using iron electrode to produce hydrogen peroxide and iron ion, or electro-Fenton reaction with DSA electrode after generating iron ions using an iron electrode.

Electrogeneration of Hypochlorite Ions using a Dimensionally Stable Anode-Type (Ti/PtPd(10%)Ox) Electrode

  • Teresa Zayas;Miriam Vega;Guillermo Soriano-Moro;Anabella Handal;Miguel Morales;Leonardo Salgado
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.268-275
    • /
    • 2024
  • The study examined the electrogeneration of hypochlorite ions (ClO-) via electrolysis of aqueous NaCl solutions using a dimensionally stable anode-type (DSA-type) electrode based on platinum and palladium oxides supported on titanium mesh (Ti/PtPd(10%)Ox). The electrogenerated ClO- was quantified on the basis of the absorption band at 292 nm (Aλ = 292) of the UV-Vis spectrum. The effect of initial pH, concentration of NaCl, cell potential difference and electrolysis time were investigated in this study. The results showed that the electrolysis of aqueous NaCl solutions increases the solution pH up to high values (≥ 8.0) that favor the formation of ClO- over chlorine or hypochlorous acid. The hypochlorite concentration increases significantly at pH values > 7.0 and shows a linear trend with increasing NaCl concentration and with increasing cell potential difference. When the cell potential and NaCl concentration are held constant, the maximum hypochlorite value during electrolysis depends on both the cell potential and NaCl concentration. The Ti/PtPd(10%)Ox anode favors the production of hypochlorite ions, making this anode a promising material for use in electrochemical oxidation of wastewater via an indirect mechanism.

Electrochemical Characteristics of Assembled-Graphite/DSA Electrode for Redox Flow Battery (Redox Flow Battery용 일체화된 흑연/DSA 전극의 전기화학적 특성)

  • Kim, Hyung-Sun
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.123-127
    • /
    • 2010
  • An assembled-graphite/DSA(Dimensionally Stable Anode) was prepared using graphite powder to increase durability and energy efficiency of redox flow battery and investigated its electrochemical properties in vanadium-based electrolyte. The cyclic voltammetry (CV) was carried out in the voltage range of -0.7V and 1.6V vs. SCE at 5 mV/sec scan rate to analyze vanadium redox reaction. From the CV results, the assembled-graphite/DSA electrode showed a fast couple reaction and good reversibility in 2M $VOSO_4$ + 2.5 M $H_2SO_4$ electrolyte. Therefore, it has been expected that this electrode increases power density as well as energy density of redox flow battery.

Electrochemical Degradation of Phenol Using Dimensionally Stable Anode (촉매성 산화물 전극을 이용한 페놀의 전기화학적 분해)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.22 no.8
    • /
    • pp.999-1007
    • /
    • 2013
  • Electrochemical degradation of phenol was evaluated at DSA (dimensionally stable anode), JP202 (Ru, 25%; Ir, 25%; other, 50%) electrode for being a treatment method in non-biodegradable organic compounds such as phenol. Experiments were conducted to examine the effects of applied current (1.0~4.0 A), electrolyte type (NaCl, KCl, $Na_2SO_4$, $H_2SO_4$) and concentration (0.5~3.0 g/L), initial phenol concentration (12.5~100.0 mg/L) on phenol degradation and $UV_{254}$ absorbance as indirect indicator of by-product degraded phenol. It was found that phenol concentration decreased from around 50 mg/L to zero after 10 min of electrolysis with 2.5 g/L NaCl as supporting electrolyte at the current of 3.5 A. Although phenol could be completely electrochemical degraded by JP202 anode, the degradation of phenol COD was required oxidation time over 60 min due to the generation of by-products. $UV_{254}$ absorbance can see the impact of as an indirect indicator of the creation and destruction of by-product. The initial removal rate of phenol is 5.63 times faster than the initial COD removal rate.

The wastewater treatment system with high performance based on electrochemical interface reaction using dimensionally stable anode with simple manufacturing (전기화학 계면반응에 기초한 DSA 전극을 사용한 고성능 폐수처리 시스템)

  • Na, Young Soo;Lee, Man Sung;Kim, Kyoungho
    • Journal of Adhesion and Interface
    • /
    • v.19 no.3
    • /
    • pp.101-105
    • /
    • 2018
  • With the rapidly growing of the population and industrization of cities, the clean and affordable water resources have gained immense interest because of remaining about 780 million people still lack access to it. However, present wastewater treatment systems have been faced with various issues, such as low processing efficiency, high operational costs and the requirement of a large area for manufacturing. It is therefore urgently required to develop an inexpensive and efficient wastewater treatment system. As the one of these efforts, we suggested and successfully demonstrated the wastewater treatment system using and electrochemical method via a dimensionally stable anode (DSA) based on rutile type $RuO_2$. Our system achieved biochemical oxygen demand (BOD), chemical oxygen demand (COD), and total organic carbon (TOC) removal efficiently at the respective rates of 52.0%, 77.8%, and 65.6% from household wastewater. In addition, we were able to remove BOD, COD, total nitrogen (TN), and total phosphorus (TP) from animal husbandry wastewater at rates of 92.9%, 75.6%, 35.1%, and 100%, respectively, thereby achieving dramatic reductions. Considering the excellent removal efficiency and the small size of this device, electrochemical wastewater treatment using a DSA coated in rutile $RuO_2$ presents a promising option for the treatment of both household and animal husbandry wastewater.