DOI QR코드

DOI QR Code

An Updated Review of Recent Studies on Dimensionally Stable Anodes (DSA)

불용성 산화 전극(DSA)의 최신 연구 동향

  • Park, Su-Ryeon (Future Environment and Energy Research Institute, Sangmyung University) ;
  • Park, Jin-Soo (Department of Green Engineering, College of engineering, Sangmyung University)
  • 박수련 (상명대학교 미래환경.에너지연구소) ;
  • 박진수 (상명대학교 공과대학 그린화학공학과)
  • Received : 2020.02.06
  • Accepted : 2020.02.19
  • Published : 2020.02.28

Abstract

DSA (Dimensionally Stable Anode) electrodes are physically, thermally and electrochemically stable and are mainly Ti electrodes coated by Ru, Ir and Ta. DSA electrodes have been used in many industrial fields such as chlor-alkali, electrochemical water treatment, water electrolysis, etc. This review paper summarizes the study on the applications using DSA electrodes published in the recent 5 years. It suggests that the researches are intensively required on effective screening of electrodes materials, optimal designing of electrode structures and economical manufacturing of large area electrodes. It is expected that these studies will contribute to the further research and development on advanced DSA electrodes. In addition, the enhancement of DSA electrodes significantly leads to expand the type of the application using electrochemical processes in industry.

불용성 산화 전극(Dimensionally Stable Anode, DSA)은 물리적, 열적, 전기화학적으로 안정적인 산화 전극이며, 주로 Ru, Ir, Ta 등의 금속 산화물이 Ti 기판에 코팅되어 사용된다. DSA 전극의 우수한 물성을 바탕으로 chlor-alkali, 전기화학적 수처리, 수전해 등의 여러 분야에 활용되고 있다. 이에 본 총설은 DSA 전극의 여러 분야의 적용과 관련된 최근 5년 자료를 정리 요약한 것이다. 이를 통해 DSA 전극의 다양한 적용을 위해서 전극 물질의 스크리닝, 구조 설계 및 경제적인 제조법에 대한 연구가 필요하다는 것을 알 수 있었다. 이러한 연구를 통하여 다양한 분야에 적용할 수 있는 DSA 전극 개발에 기여할 수 있을 것으로 기대된다. 또한, DSA 전극 개발을 통하여 전기화학적 공정을 적용할 수 있는 응용 분야를 넓힐 수 있을 것으로 예상한다.

Keywords

References

  1. A. J. Bard and L. R. Faulkner, "Electrochemical Methods: Fundamentals and Applications, 2nd Edition", John Wiley & Sons (2001).
  2. Y.-G. Guo, J.-S. Hu, and L.-J. Wan, 'Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices' Advanced Materials, 20, 2787-2887 (2008).
  3. J. Huo, Y. Shao, M. W. Ellis, R. B. Moore, and B. Yi, 'Graphene-Based Electrochemical Energy Conversion and Storage : Fuel cells, supercapacitors, and Lithium Ion Batteries' Physical Chemistry Chemical Physics, 20, 15384-15402 (2011).
  4. A. T. Marshall, S. Sunde, M. Tsypkin, and R. Tunold, 'Performance of a PEM Water Electrolysis Cell Using $Ir_xRu_yTa_zO_2$ Electrocatalysts for The Oxygen evolution Electrode' International Journal of Hydrogen Energy, 32, 2320-2324 (2007). https://doi.org/10.1016/j.ijhydene.2007.02.013
  5. Y. Takasu, W. Sugimoto, Y. Nishiki, and S. Nakamatsu, 'Structural Analyses of $RuO_2-TiO_2/Ti$ and $IrO_2-RuO_2/Ti$ Anodes Used in Industrial Chlor-Alkali Membrane Processes' Journal of Applied Electrochemistry, 40, 1789-1795 (2010). https://doi.org/10.1007/s10800-010-0137-3
  6. M. Moats, K. Hardee, and C. B. Jr., 'Mesh-on-Lead Anodes for Copper Electrowinning' JOM, 55, 46-48 (2003).
  7. A. Kariman and A. T. Marshall, 'Improving The Stability of DSA Electrodes by The Addition of $TiO_2$ Nanoparticles' Journal of the Electrochemical Society, 166, E248-E251 (2019). https://doi.org/10.1149/2.0761908jes
  8. J. Kim, C. kim, S. Kim, and J. Yoon, 'The Review of Chlorine Evolution Mechanism on Dimensionally Stable Anod (DSA)' Korean Chemical Engineering Research, 53, 531-539 (2015). https://doi.org/10.9713/kcer.2015.53.5.531
  9. T. L. Luu, J. Kim, and J. Yoon, 'Physicochemical Properties of $RuO_2$ and $IrO_2$ Electrodes Affecting Chlorine Evolutions' Journal of Electrochemistry Society, 21, 400-404 (2015).
  10. M. I. Salazar-Gastelum, S.W. Lin, G. E. Pina-Luis, S. Perez-Sicairos, and R. M. Felix-Navarro, 'Electrochemical and Spectrometric Studies for The Determination of The Mechanism of Oxygen Evolution Reaction' Journal of The Electrochemical Society, 163, G37-G43 (2016). https://doi.org/10.1149/2.0251605jes
  11. P. Strasser, 'Free Electrons to Molecular Bonds and Back : Closing The Energetic Oxygen Reduction (ORR) - Oxygen Evolution Reaction (OER) Cycle Using Core-Shell Nano electrocatalysts' Accounts of Chemical Research, 49, 2658-2668 (2016). https://doi.org/10.1021/acs.accounts.6b00346
  12. C. A. Marrtinez-Huitle and M. Panizza, 'Electrochemical Oxidation of Organic Pollutants for Wastewater Treatment' Current Opinion in Electrochemistry, 11, 62-71 (2018). https://doi.org/10.1016/j.coelec.2018.07.010
  13. Z. Yan, Y. Zhao, Z. Zhang, G. Li, H. Li, J. Wang, Z. Feng, M. Tang, X. Yuan, R. Zhang, and Y. Du, 'A Study on The Performance of $IrO_2-Ta_2O_5$ Coated anodes with Surface Treated Ti Substrates' Electrochimica Acta, 157, 345-350 (2015). https://doi.org/10.1016/j.electacta.2015.01.005
  14. Z. Yan, G. Li, J. Wang, Z Zhang, Z. Feng, M. Tang, and R Zhag, 'Electro-Catalytic Study on $IrO_2-Ta_2O_5$ Coated Anodes with Preheated Titanium Substrates' Journal of Alloys and Compounds, 680, 60-66 (2016). https://doi.org/10.1016/j.jallcom.2016.04.090
  15. K. Kawaguchi and M. Morimitsu, 'Effect of Oxide Composition Structure, Surface, Morphology, and Oxygen Evolution Behaviors of $IrO_2-Ta_2O_5/Ti$ Anode Prepared at A High Temperature' Electrochemistry, 83, 256-261 (2015). https://doi.org/10.5796/electrochemistry.83.256
  16. T. E. S. Santos, R. S. Silva, K. I. B. Eguiluz, and G. R. Salazar-Banda, 'Development of $Ti/(RuO_2){_{0.8}}(Mo_2){_{0.2}}$ (M = Ce, Sn, or Ir) Anodes for Atrazine Electro-Oxidation : Influence of The Synthesis method' Material Letters, 146, 4-8 (2015). https://doi.org/10.1016/j.matlet.2015.01.145
  17. T. E. S. Santos, R. S. Silva, C. T. Menesses, C. A. Martinez-Huitle, K. I. B. Eguiluz, and G. R. Salazar-Banda, 'Unexpected Enhancement of Electrocatalytic Nature of $Ti/(RuO_2){_x}-(Sb_2O_5){_y}$ Anodes Prepared by The Ionic Liquid- Thermal Decomposition Method' Industrial & Engineering Chemistry Research, 55, 3182-3187 (2016). https://doi.org/10.1021/acs.iecr.5b04690
  18. A. Xu, K. Wei, Y. Zhang, W. Han, J. Li, X. Sun, J. Shen, and L. Wang, 'A Facile-Operation Tubular Electro-Fenton System Combined with Oxygen Evolution Reaction for Flutriafol Degradation : Modeling and Parameters Optimizing' Electrochimica Acta, 246, 1200-1209 (2017). https://doi.org/10.1016/j.electacta.2017.06.133
  19. D. Li, J. Tang, X. Zhou, J. Li, X. Sun, J. Shen, L. Shen, L. Wang, and W. Han, 'Electrochemical Degradation of Pyridine by $Ti/SnO_2$-Sb Tubular Porous Electrode' Chemosphere, 149, 49-56 (2016). https://doi.org/10.1016/j.chemosphere.2016.01.078
  20. J. Yin, W. Zhang, D. Zhang, M. Huo, Q. Zhang, and J. Xie, 'Electrochemical Degradation of Chlorobenzene on Conductive-Diamond Electrode' Diamond & Related Materials, 68, 71-77 (2016). https://doi.org/10.1016/j.diamond.2016.06.005
  21. P. Li, Y. Zhao, B. Ding, and L. Wang, 'Effect of Calcination Temperature and Molar Ratio of Tin and Manganese on Capacitance of $Ti/SnO_2-Sb-Mn/{\beta}-PbO_2$ Electrode during Phenol Electro-Oxidation' Journal of Electroanalytical Chemistry, 747, 45-52 (2015). https://doi.org/10.1016/j.jelechem.2015.02.029
  22. E. Isarain-Chavez, M. D. Baro, E. Rossinyol, U. Morales-Oriz, J. Sort, E. Brillas, and E. Pelicer, 'Comparative Electrochemical Oxidation of Methyl Orange Azo Dye Using Ti/Ir-Pb, Ti/Ir-Sn, Ti/Ru-Pb, Ti/Pt-Pd, and $Ti/RuO_2$ Anodes' Electrochimica Acta, 244, 199-208 (2017). https://doi.org/10.1016/j.electacta.2017.05.101
  23. Y. Yang, L. C. Kao, Y. Lin, K. Sun, H. Yu, J. Guo, S. Y. H. Lious, and M. R. Hoffmann, 'Cobalt-doped Black $TiO_2$ Nanotube Array as A Stable Anode for Oxygen Evolution and Electrochemical Wastewater Treatment' ACS Catalysis, 8, 4278-4287 (2018). https://doi.org/10.1021/acscatal.7b04340
  24. Z. Ukundimana, P. I. Omwene, E. Gengec, O. T. Can, and M. Kobya, 'Electrooxidation as Post Treatment of Ultrafiltration Effluent in A Landfill Leachate MBR Treatment Plant : Effects of BDD, Pt, and DSA anodes types' Electrochimica Acta, 286, 252-263 (2018). https://doi.org/10.1016/j.electacta.2018.08.019
  25. R. E. Palma-Goyes, J. Vazquez-Arenas, R. A. Toress-Palma, C. Ostos, F. Ferraro, and I. Gonzalez, 'The Abatement of Indigo Carmine Using Active Chlorine Electro Generated On Ternary $Sb_2O_5$-Doped $Ti/RuO_2-ZrO_2$ Anodes in A Filter-Press FM01-LC Reactor' Eelctrohcimica Acta, 174, 735-744 (2015). https://doi.org/10.1016/j.electacta.2015.06.037
  26. S. Dbira, N. Bensalah, P. Canizares, M. A. Rodrigo, and A. Bedoui, 'The Electrolytic treatment of Synthetic Urine Using DSA Electrodes' Journal of Electroanalytical Chemistry, 744, 62-68 (2015). https://doi.org/10.1016/j.jelechem.2015.02.026
  27. S. Vahidhabasu, J. S. Alilash, S. Ananthakumar, and B. B. Ramesh, 'Effect of Ruthenium Oxide/Titanium Mesh Anodes Microstructure on Electrooxidation of Pharmaceutical Effluent' International Journal of Waste Resources, 5, 1000191 (2015).
  28. F. Sopaj, M A. Rodorigo, N. Oturan, F. I. Podvorica, J. Prinson, and M. A. Otura, 'Influence of The Anode Materials on The Electrochemical Oxidation Efficiency : Application to Oxidative Degradation of The Pharmaceutical Amoxicillin' Chemical Engineering Journal, 262, 286-294 (2015). https://doi.org/10.1016/j.cej.2014.09.100
  29. A. Goyal and V. C. Strivastava, 'Treatment of Highly Acidic Wastewater High Energetic Compounds Using Dimensionally Stable Anode' Chemical Engineering Journal, 325, 289-299 (2017). https://doi.org/10.1016/j.cej.2017.05.061
  30. V. Markou, M.-C. Kontogianni, Z. Frontistis, A. G. Tekeleklopoulou, A. Katsaounis, and D. Vayenas, 'Electrochemical Treatment of Biologically Pre-Treated Dairy Wastewater Using Dimensionally Stable Anodes' Journal of Environmental Management, 202, 217-224 (2017). https://doi.org/10.1016/j.jenvman.2017.07.046
  31. E. J. Martinez, J. G. Rosas, R. Gonzalez, D. Garcia, and X. Gomez, 'Treatment of Vinasse by Electrochemical Oxidation : Evaluating The Performance of Boron-Doped Diamond (BDD) - Based and Dimensionally Stable Anodses (DSAs)' International Journal of Environmental Science and Technology, 15, 1156-1168 (2018).
  32. A. Baddouh, G. G. Bessegato, M. M. Rguiti, B. E. Ibrahimi, L Bazzi, M. Hilai, and M. V. B. Zanoni, 'Electrochemical Decolorization of Rhodamine B Dye : Influence of Anode Material, Chloride Concentration And Current Density' Environmental Chemical Engineering, 6, 2041-2047 (2018). https://doi.org/10.1016/j.jece.2018.03.007
  33. W.-C. Cho, K.-M. Poo, H. O. Mohamed, T.-N. Kim, Y.-S. Kim, M. H. Hwang, D.-W. Jung, and K.-Y. Chae, 'Non-Selective Rapid Electro-Oxidation of Persistent, Refractory VOCs in Industrial Wastewater Using A Highly Catalytic and Dimensionally Stable Ir-Pd/Ti Composite Electrode' Chemosphere, 206, 483-490 (2018). https://doi.org/10.1016/j.chemosphere.2018.05.060
  34. C. Bruguera-Casamada, I. Sires, E. Brillas, and R. M. Araujo, 'Effect of Electrogenerated Hydroxyl Radicals, Active Chlorine and Organic Matter on The Electrochemical Inactivation of Pseudomonas Aeruginosa Using BDD and Dimensionally Stable Anodes' Separation and Purification Technology, 178, 224-234 (2017). https://doi.org/10.1016/j.seppur.2017.01.042
  35. C. M. Dominguez, N. Oturan, A. Romero, A. Santos, and M. A. Oturan, 'Lindane Degradation by Electrooxidation Process : Effect of Electrode Materials on Oxidation and Mineralization Kinetics' Water Research, 135, 220-230 (2018). https://doi.org/10.1016/j.watres.2018.02.037
  36. J. U. Choi, 'A Study on The Effects of Pretreatment of Dimensionally Stable Anodes (DSAs) on Performance and Durability' Master Dissertation, Sangmyung University, Cheonan, Korea (2019).
  37. C. A. Hung, S. W. Yang, C. Z. Chen, and F.-Y. Hsu, 'Electrochemical Behavior of $IrO_2/Ta_2O_5/Ti$ Anode Prepared with Different Surface Pretreatment of Ti Substrate' Surface & Coating Technology, 320, 270-278 (2017). https://doi.org/10.1016/j.surfcoat.2017.01.005
  38. R. Salazar, J. Gallardo-Arriaza, J. Vidal, C. Rivera-Vara, C. Toledo-Neira, M. A. Sandoval, L. Cornejo-Ponce, and A. Thiam, 'Treatment of Industrial Textile Wastewater by The Solar Photo electro-Fenton Process : Influence of Solar Radiation and Applied Current' Solar Energy, 190, 82-91 (2019). https://doi.org/10.1016/j.solener.2019.07.072
  39. Y. Zhao, Q. Fan, X. Wang, W. Zhang, X. Hu, C. Liu, and W. Liang, 'Photoelectrocatalytic Degradation of Microcystin-LR Using A Dimensionally Stable Anode and The Assessment of Detoxification' Chemical Engineering Journal, 368, 968-979 (2019). https://doi.org/10.1016/j.cej.2019.03.029
  40. J. Paramo-Vargas, A. M. E. Gamargo, S. Guierrez-Granados, L. A. Godinez, and J. M. Peralta-Hernandz, 'Applying Electro-Fenton Process as An Alternative to A Slaughterhouse Effluent Treatment' Electrochimica Acta, 754, 80-86 (2015).
  41. S. Hussain, J. R. Steter, S. Gul, and A. J. Motheo, 'Photo-Assisted Electrochemical Degradation of Sulfamethoxazole Using A $Ti/Ru_{0.3}Ti_{0.7}O_2$ Anode : Mechanistic and Kinetic Features of The Process' Journal of Environmental Management, 201, 153-162 (2017). https://doi.org/10.1016/j.jenvman.2017.06.043
  42. E. Gomathi, B. Balraj, and K. Kumaruaguru, 'Electrochemical Degradation of Scarlet Red Dye from Aqueous Environment by Titanium-Based Dimensionally Stable Anodes with SS Electrodes' Applied Biological Chemistry, 61, 289-293 (2018). https://doi.org/10.1007/s13765-018-0357-5
  43. P. Li, Z. Bao, G. Wang, P. Xu, X. Wang, Z. Liu, Y. Guo, J. Deng, and W. Zhang, 'Ternary Semiconductor Metal Oxide Blends Grafted Ag@AgCl Hybrid as Dimensionally Stable Anode Active Layer for Photoelectrochemical Oxidation of Organic Compounds : Design Strategies and Photoelectric Synergistic Mechanism' Journal of Hazardous Materials, 362, 336-347 (2019). https://doi.org/10.1016/j.jhazmat.2018.09.041
  44. I. K. Park, C.-Y. Ahn, J. H. Lee, D. W. Lee, C. H. Lee, Y.-H. Cho, and Y.-E. Sung, 'Three-Dimensionally Interconnected Titanium Foam Anode for An Energy-Efficient Zero Gap-Type Chlor-Alkali Electrolyzer' International Journal of Hydrogen Energy, 44, 16079-16086 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.230
  45. S. E. Heo, H. W. Lim, D. K. Cho, I. J. Park, H. Kim, C. W. Lee, S. H. Ahn, and J. Y. Kim, 'Anomalous Potential Dependence of Conducting Property in Black Titania Nanotube Arrays for Electrocatalytic Chlorine Evolution' Journal of Catalysis, 381, 462-467 (2020). https://doi.org/10.1016/j.jcat.2019.11.030
  46. F. Zhang, X. Gu, S. Zheng, H. Yuan, J. Li, and X. Wang, 'Highly Catalytic Flexible $RuO_2$ on Carbon Fiber Cloth Network for Boosting chlorine Evolution Reaction' Electrochimica Acta, 307, 385-392 (2019). https://doi.org/10.1016/j.electacta.2019.03.187
  47. H. Hwang, D. Lim, T. Kim, D. Lee, S. E. Shim, and S.-H. Beack, 'Electro-Catalytic Activity of $RuO_2-IrO_2-Ta_2O_5$ Mixed Metal Oxide Prepared by Spray Thermal Decomposition for Alkaline Water Electrolysis' Journal of Nanoscience and Nanotechnology, 16, 4405-4410 (2016). https://doi.org/10.1166/jnn.2016.11001
  48. S. S. Kumar, S. U. B. Ramakrishna, D. Bhagawan, and V. Himabindu, 'Preparation of $Ru_xPd_{1-x}O_2$ Electrocatalysts for The Oxygen Evolution Reaction in PEM Water Electrolysis' Ionics, 24, 2411-2419 (2018). https://doi.org/10.1007/s11581-017-2359-4
  49. M. A. Gonzalez-Lopez, V. E. Reye-Cruz, J. A. Cobos-Murcia, M. A. Veloz-Rodriguez, G. Urbano-Reyes, and M. Perez-Labra, 'Effect on DSA Electrodes ($A304{\mid}RuO_2$) on The Electrochemical Production on $H_2$' International Journal of Electrochemical Science, 13, 10873-10883 (2018).
  50. J. E. Park, H. Lee, S.-H. Oh, S. Y. Kang, I. Choi, Y.-H. Cho, and Y.-E. Sung, 'Electrodeposited Mesh-Type Dimensionally Stable Anode for Oxygen Evolution Reaction in Acidic and Alkaline Media' Chemical Engineering Science, 206, 424-431 (2019). https://doi.org/10.1016/j.ces.2019.05.048
  51. S. H. Son, S. C. Park, and M. S. Lee, 'Enhancement of Life Time of The Dimensionally Stable Anode for Copper Electroplating Application' Archive of Metallurgy and Materials, 62, 1019-1022 (2017). https://doi.org/10.1515/amm-2017-0145
  52. R. Ma, S. Cheng, X. Zhang, S. Li, Z. Liu, and X. Li, 'Oxygen Evolution and Corrosion Behavior of Low-$MnO_2$-Content-Pb-$MnO_2$ Composite Anodes for Metal Electrowinning' Hydrometallurgy, 159, 6-11 (2016). https://doi.org/10.1016/j.hydromet.2015.10.031
  53. G. Acosta-Santoyo, R. A. Herrada, S. D. Folter, and E. Bustos, 'Enhanced Germination and Growth of Arabidopsis Thaliana Using $IrO_2-Ta_2O_5{\mid}$ Ti as Dimensional Stable Anode in The Electro-Culture technique' Geo-Chicago, 269, 33-41 (2016).
  54. M. Perez-Corona, A. Corona, E. D. Beltran, J. Cardenas, and E. Bustos, 'Evaluation of $IrO_2-Ta_2O_5{\mid}$ Ti Electrodes Employed during The Electroremediation of Hydrocarbon-Contaminated Soil' Sustainable Environmental Research, 23, 279-284 (2013).
  55. A. Galia, S. Lanzalac, M. A. S. Abatino, C. Dispenza, O. Scialdone, and I. Sires, 'Crosslinking of Poly (vinylpyrrolidone) Activated by Electrogenerated Hydroxyl Radicals : A First Step Towards A Simple and Cheap Synthetic Route of Nanogel Vectors' Electrochemistry Communication, 62, 64-68 (2016). https://doi.org/10.1016/j.elecom.2015.12.005
  56. J. Ge, X. Zou, S. Almassi, L. Ji, B. P. Chaplin, and A. J. Bard, 'Electrochemical Production of Si without Generation of $CO_2$ Based on The Use of A Dimensionally Stable Anode in Molten CaCl2' Angewandte Chemie International Edition, 58, 2-8 (2019). https://doi.org/10.1002/anie.201813331
  57. R. Tang-Kong, C. O. Rourke, A. Mills, and P. C. McIntye, 'Silicon Photoanodes for Solar-Driven Oxidation of Brine : A Nanoscale, Photo-Active Analog of The Dimensionally Stable Anode' Journal of The Electrochemical Society, 165, H1072-H1079 (2018). https://doi.org/10.1149/2.0791816jes
  58. H. Feng, Y. Liang, K. Guo, W. Chen, D. Shen, L. Huang, Y. Zhou, M. Wang, and Y. Long, '$TiO_2$ Nanotube Arrays Modified Titanium : A Stable, Scalable, and Cost-Effective Bioanode for Mirobial Fuel Cells' Environmental Science & Technology Letters, 3, 420-424 (2016). https://doi.org/10.1021/acs.estlett.6b00410
  59. S. Cotillas, J. Llanos, K. Castro-Rios, G. Taborda-Ocampo, M. A. Rodrigo, P. Canizares, 'Synergistic Integration of Sonochemical and Electrochemical Disinfection with DSA Anodes' Chemosphere, 163, 562-568 (2016). https://doi.org/10.1016/j.chemosphere.2016.08.034