• Title/Summary/Keyword: DPQ

Search Result 7, Processing Time 0.017 seconds

Synthesis and Electrochemical Study of the Ir(III) Complexes Containing the Diphenyl-quinoline, -Quinoxaline and Pyrazolonate Ligands

  • Lee, Hyun-Shin;Ha, Yun-Kyoung
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.1007-1010
    • /
    • 2011
  • $Ir(dpq/dpqx)_2$(przl-R) complexes were prepared and their electrochemical properties were investigated, where dpq, dpqx and przl-R represent 2,3-diphenylquinoline, 2,3-diphenylquinoxaline and N-phenyl-R-pyrazolonate derivatives, respectively. The iridium complexes containing dpq and dpqx as main ligands were reported to show red phosphorescence, and involvement of a pyrazolonate ancillary ligand in the iridium complexes led to high luminous efficiency for organic light-emitting diodes. In this study, we synthesized red phosphorescent iridium complexes containing a new pyrazolonate ancillary ligand and investigated the HOMOs, LUMOs and resulting electrochemical gaps of $Ir(dpq/dpqx)_2$(przl-R) by cyclic voltammetry. The emission wavelengths of the complexes at 600 - 640 nm were consistent with the gaps of 1.95 - 2.03 eV measured from reduction and oxidation potentials of the complexes.

Synthesis and Characterization of heteroleptic Iridium Complex with Phenylpyridine and 5'-methyl-diphenylquinoline

  • Lee, Seung-Chan;Kim, Young-Sik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.702-705
    • /
    • 2007
  • New heteroleptic tris-cyclometalated iridium complex, $Ir(ppy)_2(dpq-5CH_3)$, was prepared, where ppy and $dpq-5CH_3$ represent phenylpyridine and 2(5'-methyl)- 4-diphenylquinoline, respectively. The heteroleptic iridium complex shows high luminescence efficiency by the intramolecular energy transfer from the energy absorbing ppy ligands to the luminescent $dpq-5CH_3$ ligand leading to a decrease on quenching or energy deactivation.

  • PDF

Marine Engine State Monitoring System using DPQ in CAN Network (CAN의 분산 선행대기 열 기법을 이용한 선박 엔진 모니터링 시스템)

  • Lee, Hyun;Lee, Jun-Seok;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.1
    • /
    • pp.13-20
    • /
    • 2012
  • This paper proposes a marine engine state monitoring system using a DPQ (Distributed Precedence Queue) mechanism which collects the state of bearings, temperature and pressure of engine through the CAN network. The CAN is developed by Bosch Corp. in the early 1980' for automobile network. The data from various sensors attached in the marine engine are converted to digital by the analog to digital converter and formatted to fit the CAN protocol at the CAN module. All the CAN modules are connected to the SPU (Signal Processing Unit) module for the efficient communication and processing. This design reduces the cost for wiring and improves the data transmission reliability by recognizing the sensor errors and data transmission errors. The DPQ mechanism is newly developed for the performance improvement of the marine engine system, which is demonstrated through the experiments.

Saturated- and Unsaturated-Azamacrocyclic Complexes $(M = Co^{3+}, Fe^{3+}$ or $Mn^{3+})$ Catalyzed Oxidation of Hindered Phenols by Molecular Oxygen under Sodium Borohydride (Sodium Borohydride 하에서 산소에 의한 포화- 및 불포화-질소주게 거대고리 착물 $(M=Co^{3+},\;Fe^{3+}$$Mn^{3+})$을 촉매로 한 Hindered Phenols의 산화반응)

  • Yu-Chul Park;Seong-Su Kim;Hun-Gil Na
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.7
    • /
    • pp.648-654
    • /
    • 1993
  • $[M(cyclam)X_2]Y(M=Co^{3+},\;Fe^{3+},\;Mn^{3+}\;:\;X=Cl-^,\;Br^-,\;NCS^-\;:\;Y=Cl^-,\;Br^-,\;NCS^-),\;[Co(trans-14-diene)X_2]Y(X=Cl^-,\;Br^-\;:\;Y=ClO_4^-)\;and\;[Co(trans-14-diene)](ClO_4)_2$ were able to activate an molecular oxygen under sodium borohydride. 2,4-di-tert-butylphenol and 2,6-di-tert-butylphenol reacted with activated molecular oxygen to give 2,4-tert-butyl-1,6-benzoquinone(BQ) and 3,5,3',5'-tetra-tert-butyldiphenoquinone(DPQ). The saturated tetraazamacrocyclic complexes, $[Co(cyclam)X_2]Y$, were more an effective catalyst than $[Co(trans-14-diene)X_2]Y$ the unsaturated complexes in the formation of BQ and DPQ. The mole ratio of $O_2$ vs. catalyst $(O_2/M)$ for $[Co(cyclam)X_2]Y$ and [Co(trans-14-diene)X_2]Y$ was 1/1, while it was 1/2 for $[M(cyclam)Cl_2]Cl(M=Fe(III),\;Mn(III))$. The results suggested that Co(III)-macrocyclic complexes activated molecular oxygen as superoxolike ${O_2}^-$ and $[M(cyclam)Cl_2]Cl(M=Fe(III),\;Mn(III))$ activated that as peroxolike $O_2^{2-}$.

  • PDF

The Effects of Polymerization Catalyst Systems on the Synthesis of Poly(2,6-dimethyl-1,4-phenylene ether) (중합촉매 시스템이 폴리페닐렌에테르의 합성에 미치는 영향)

  • Lee, Chang-Jae;Kim, Yong-Tae;Kim, Jin-Kyu;Kim, Ji-Heung;Nam, Sung-Woo;Jeon, Boong-Soo;Kim, Young-Jun
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.98-103
    • /
    • 2012
  • Poly(2,6-dimethyl-1,4-phenylene ether) (PPE) was synthesized using $Cu(NO_2)_2{\cdot}3H_2O$ or CuCl catalyst with various amounts of ligand and base in several different solvent systems. CuCl/1-methylimidazole/ammonium hydroxide was found to be an effective catalyst system which showed the highest polymer yield and molecular weight. The effects of catalyst/monomer ratio, different amine ligands, and the content of mono-functional reagent 2,4,6-trimethylphenol (TMP) additive on the polymer yield and molecular weight were investigated. Among the co-solvent systems used in this polymerization, chloroform/methanol 9/1(v/v) gave the highest polymer yield and molecular weight ($\overline{M_n}$ 55 K, $\overline{M_w}$ 92 K, PDI 1.7). The catalytic activity between CuCl and CuI was compared by oxygen-uptake experiments and the formation of sideproduct, 5,5'-tetramethyl-4,4'-diphenoquinone (DPQ), was analyzed by ultraviolet spectroscopy.

Development of the Disaster Nursing Preparedness·Response Competency(DNPRC) Scale in terms of Convergence (융합적 측면에서의 재난간호대비·대응역량 측정도구 개발)

  • Ahn, Ok-Hee;Jang, Eun-Hee;Kim, Seo-Hyeon
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.7
    • /
    • pp.101-111
    • /
    • 2017
  • The purpose of this study was to develop a Disaster Nursing Preparedness Response Competency(DNPRC) Scale in terms of convergence and to verify its validity and reliability. Based on ICN Framework of the Disaster Nursing Competencies, DNPRC was developed through literature review. Participants was 292 nurses. Content Validitys, Construct Validity, and Reliability was verified through the exploratory factor analysis and confirmatory factor analysis, Convergent validity was tested by Pearson's coefficient correlation between DNPRC and DPQ-N. DNPRC was 5point likert scale with a total 34 item, consisting of 3 3 factosr, 16item of preparedness,4 factors, 18item of response. The reliability was Cronbach's ${\alpha}=.96$. This study may be useful to identify a disaster nursing competency and its related factors for nurse, and to develop nursing intervention to imprive nurses' disaster nursing competency.

Selective Oxidation of 2,6-di-tert-butylphenol and Electrochemical Properties by Oxygen Adducted Tetradentate Schiff Base Cobalt (Ⅲ) Activated Catalysts in Aprotic Solvents (비수용매에서 산소 첨가된 네자리 Schiff Base Cobalt(Ⅲ) 활성 촉매들에 의한 2,6-di-tert-butylphenol의 선택 산화와 전기화학적 성질)

  • Jo, Gi Hyeong;Choe, Yong Guk;Ham, Hui Seok;Kim, Sang Bok;Seo, Seong Seop
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.569-581
    • /
    • 1990
  • It is generated in DMF by activated catalysts of superoxo cobalt(III) complex, such as [Co(III)(Schiff base)(L)]O$_2$ (Schiff base; SED, SOPD and o-BSDT, L; DMF and Py) which mole ratio of oxygen to metal is 1:1 that oxidation major product of 2,6-di-tert-butylphenol by homogeneous oxidatve catalysts of oxygen adducted tetradentate Schiff base cobalt(III) is 2,6-ditert-butylbenzoquinone (BQ). And oxidation product of 3,3',5,5'-tetra-tert-butyldiphenoquinone (DPQ) is generated by activated catalysts such as $\mu$-peroxo cobalt(III) complex; $[Co(III)(SND)(L)]_2$$O_2$ (L; DMF and Py) which mole ratio of oxygen to metal is 1:2. It is difficult to identify these homogeneous activated catalysts such as superoxo and $\mu$-peroxo cobalt(III) complexes in DMF and DMSO solvents. But we can identify by P.V.T method of the oxygen absorption in pyridine solvent and by the reduction process occurred to four steps including prewave of O$_2$- in 1:1 oxygen adducted superoxo cobalt(III) complexes and three steps not including prewave of O$_2$- in 1:2 oxygen adducted $\mu$-peroxo cobalt(III) complexes by the cyclic voltammetry with glassy carbon electrode in 0.1 M TEAP as supporting electrolyte solutidn.

  • PDF