• Title/Summary/Keyword: DPF(Diesel Particulate Filter)

Search Result 120, Processing Time 0.025 seconds

A study of improving filtration efficiency through SiC whisker synthesis on carbon felt by CVD VS method

  • Kim, Gwang-Ju;Choe, Du-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.150-150
    • /
    • 2016
  • Mankind is enjoying a great convenience of their life by the rapid growth of secondary industry since the Industrial Revolution and it is possible due to the invention of huge power such as engine. The automobile which plays the important role of industrial development and human movement is powered by the Engine Module, and especially Diesel engine is widely used because of mechanical durability and energy efficiency. The main work mechanism of the Diesel engine is composed of inhalation of the organic material (coal, oil, etc.), combustion, explosion and exhaust Cycle process then the carbon compound emissions during the last exhaust process are essential which is known as the major causes of air pollution issues in recent years. In particular, COx, called carbon oxide compound which is composed of a very small size of the particles from several ten to hundred nano meter and they exist as a suspension in the atmosphere. These Diesel particles can be accumulated at the respiratory organs and cause many serious diseases. In order to compensate for the weak point of such a Diesel Engine, the DPF(Diesel Particulate Filter) post-cleaning equipment has been used and it mainly consists of ceramic materials(SiC, Cordierite etc) because of the necessity for the engine system durability on the exposure of high temperature, high pressure and chemical harsh environmental. Ceramic Material filter, but it remains a lot of problems yet, such as limitations of collecting very small particles below micro size, high cost due to difficulties of manufacturing process and low fuel consumption efficiency due to back pressure increase by the small pore structure. This study is to test the possibility of new structure by direct infiltration of SiC Whisker on Carbon felt as the next generation filter and this new filter is expected to improve the above various problems of the Ceramic DPF currently in use and reduction of the cost simultaneously. In this experiment, non-catalytic VS CVD (Vapor-Solid Chemical Vaporized Deposition) system was adopted to keep high mechanical properties of SiC and MTS (Methyl-Trichloro-Silane) gas used as source and H2 gas used as dilute gas. From this, the suitable whisker growth for high performance filter was observed depending on each deposition conditions change (input gas ratio, temperature, mass flow rate etc.).

  • PDF

An Evaluation and Management Strategy of Environmental Zone for Improving Air Quality in the Seoul Metropolitan Area (수도권 도심 대기질 개선을 위한 환경지역의 운영전략 및 평가에 관한 연구)

  • Choi, Kee Choo;Lee, Kyu Jin;Ahn, Seong Chae;Shin, Kang Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6D
    • /
    • pp.693-702
    • /
    • 2009
  • In the Seoul metropolitan area (SMA), transportation sector is the largest source of air pollutant emissions. Of the total amount of air pollutant emissions in the SMA, about 52% of the particulate matter emissions and 59% of the nitrogen oxide emissions are from superannuated heavy diesel vehicles. To lessen the air pollutant emissions from superannuated heavy vehicles in the SMA, this study devised several strategies for operating Environmental Zone (EZ) program, which requires superannuated heavy diesel vehicles to install reduction equipments as well as restricts them entering part of the SMA, and evaluated the effects of different strategies on air pollution in the SMA. By using the Korean traffic statistics, an evaluation has been made of six EZ scenarios, which were devised by different target areas and vehicles. The results showed that the EZ program with retrofitting a DPF (Diesel Particulate Filter) equipment to 7-year-old heavy diesel vehicles and early scrapping of pre-1998 heavy diesel vehicles is the most efficient alternative in terms of air pollution reduction. In addition, the results showed that the magnitude of air pollution reduction increases when implementing the EZ program to all entering superannuated heavy diesel vehicles to the SMA rather than registered ones in the SMA.

A Review on the Characteristics of Air Pollutants Emitted from Passenger Cars in Korea

  • Jung, Sungwoon;Kim, Jeongsoo
    • Journal of ILASS-Korea
    • /
    • v.21 no.4
    • /
    • pp.223-236
    • /
    • 2016
  • On-road source emissions are major air pollutants and have been associated with serious health effects in Seoul metropolis. Thus, it is of fundamental importance to have an accurate assessment of vehicle emissions in order to implement an effective air quality management policy. As a result, there is a need to overview vehicle emission characteristics of air pollutants. This article discusses vehicle exhaust sampling and chemical analysis, emission characteristics of air pollutants, and emission regulations from passenger cars. The vehicle exhaust sampling and chemical analysis methods were described in particulate matter and gaseous compounds. In this article, chassis dynamometer, measurement instrumentation for nano-particulate matter and carbon compounds analysis device were described. For the gasoline and diesel vehicles, the effective parameters of emissions were average vehicle speed, vehicle mileage and model year. The particle number emissions for diesel nano-particles were sensitive to the sampling conditions. Also, the particle number emissions with a diesel particle filter (DPF) largely reduced rather than those without it. This article also describes different emission characteristics of air pollutants according to biodiesel or bioethanol mixing ratio. The Korean emission standards for passenger cars were compared with those of the US and EU. Finally, the objective is to give an overview of relevant background information on emission characteristics of air pollutants from passenger cars in Korea.

Numerical Study on the Effect of Changes of Geometric Shape of Diesel Particulate Filter on Light-Off Characteristics and Transient Thermal Behavior during Regeneration (디젤입자상물질필터의 기하학적 형상변화가 재생과정 중 활성화 특성 및 비정상 온도거동에 미치는 영향에 관한 수치적 연구)

  • Jeong, Soo-Jin;Lee, Sang-Jin;Kim, Woo-Seung;Lee, Chun-Beom
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.68-76
    • /
    • 2006
  • The minimization of maximum DPF wall temperature and the fast Light-off during regeneration are the targets for the high durability of the DPF system and the high efficiency of regeneration. In order to predict transient thermal response of DPF, one-channel numerical modeling has been adopted. The effect of the ratio of length to diameter(L/D), cell density, the amount of soot loading on temporal thermal response and regeneration characteristics has been numerically investigated under two different running conditions: city driving mode and high speed mode. The results indicate that the maximum wall temperature of DPF increase with increasing 'L/D' in 'High speed mode'. For 'City driving mode', the maximum wall temperature decreases with increasing 'L/D' in the range of $'L/D{\geq}0.6'$. The maximum temperature decreases with increasing cell density because heat conduction and heat capacity are increased. It is also found that the effect of amount of soot loading on light-off time is negligible.

Study on Transient Analysis for Flow Characteristics in DPF (DPF의 유동특성에 관한 과도해석 연구)

  • Shin, Dong-Won;Yoon, Cheon-Seog
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.131-138
    • /
    • 2010
  • Because real flow of engine exhaust is very hot and highly transient, it may cause thermal and inertial loads on catalyzed filters in DPF. Transient and detailed flow and thermal simulations are necessary in this field. To assess the importance of time dependent phenomena, typical cone-type configuration such as an underbody DPF is selected for steady and transient analysis. User defined functions of FLUENT by sinusoidal inlet velocities are written and integrated with main solver for realistic simulation. Also, 4-cylinder and 6-cylinder engines for 3,000 L class are considered for the dynamic exhaust effect of engine type. Key parameters to understanding of catalyst performance and durability issues such as flow uniformity index and peak velocity are investigated. Also, pressure drop for engine power are considered. From the simulation results for three different cases, proper approach is recommended.

PERFORMANCE AND EXHAUST GAS CHARACTERISTICS ON DIESEL PARTICULATE FILTER TRAP

  • Oh, S.K.;Baik, D.S.;Han, Y.C.
    • International Journal of Automotive Technology
    • /
    • v.3 no.3
    • /
    • pp.111-115
    • /
    • 2002
  • Suddenly increasing numbers of automobiles result in making worse air pollution problems. In particular, the emissions from automobiles affect badly on atmosphere. Nowadays, research on catalyst converter and filter trap as a modem technology is very active because PM is designated as a major cancer material and stringent regulations on this are necessary and required. The ceramic filter is very efficient in reducing particular materials up to 80-90% and is evaluated as a very efficient after-treatment technology. However, it comes with decreased engine performance due to increased back-pressure occurred by thermal crack. In order to solve these problems, several methods are proposed such as fuel additive, electric heater and burner types. This experimental study has been conducted with equipped and unequipped a ceramic filter on a displacement 11,000cc diesel engine and compared in terms of engine performance and emission. To measure the emission, D-13 mode is applied and measured quantities of the exhaust gases, particularly in CO, HC, PM, and NOx. Therefore, this research is focused on the basic mechanism and characteristics on harmful materials generated by ceramic filter.

Emission Characteristics of NO2 in Diesel Oxidation Catalyst according to the Content of Precious Metal (귀금속 함량에 따른 디젤산화촉매의 이산화질소 배출 특성)

  • Kim, Hoonmyung;Park, Yongsung;Lee, Gwang G.
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.37-38
    • /
    • 2012
  • Two catalyst systems with different content of precious metal coated on DOC are carefully tested in a diesel engine to investigate the emission characteristics of $NO_2$. Three types of experiment methods ($NO_2$ conversion test, ETC mode test, and BPT test) are applied to compare the performance of the two catalyst systems. All the experimental results consistently indicate that it is possible to satisfy $NO_x$ regulation by properly lowering the content of precious metal without the loss of PM removal performance.

  • PDF

An Experimental Study on the Smoke Filtration System of Suction Type of Exhaustic Gas using Vaccum (부압을 이용한 배기 흡입형 매연여과장치에 대한 실험적 연구)

  • Lee, H.S.;Ki, S.W.;Koh, D.K.
    • Journal of Power System Engineering
    • /
    • v.15 no.6
    • /
    • pp.16-21
    • /
    • 2011
  • Over the past years, many research works have been carried out to investigate the factors which govern the performance of diesel engine. The air pollutant emission from the diesel engine is still a significant environmental concern in many countries. In the present study, new system of smoke filtration of diesel engine is proposed. This new system is using vacuum equipment and filter for capture smoke. To verification new system experiments are performed at diesel vehicle and engine dynamometer. As a result it is founded that smoke is decreased of 67% at vehicle test and decrease of 45.2% at full load condition of engine dynamometer test.

Study of Particle Emission Contour Construction & Characteristics and Reduction Efficiency of Exhaust-Treatment System of Diesel Engine (승용 디젤 엔진의 후처리 시스템 적용에 따른 나노입자 배출 맵 구축 및 저감특성에 관한 연구)

  • Ko, A-Hyun;Hwang, In-Goo;Myung, Cha-Lee;Park, Sim-Soo;Choi, Hoi-Myung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.8
    • /
    • pp.755-760
    • /
    • 2010
  • In this study, we mainly focused on the PM (Particulate Matter) emission characteristics of a diesel engine. To analyze particle behavior in the tail-pipe, particle emission was measured on the engine-out (downstream of turbocharger), each upstream and downstream both of DOC (Diesel Oxidation Catalyst) and DPF (Diesel Particulate Filter). Moreover, particle emission contours on each sampling point were constructed. The reduction efficiency of particle number concentration and mass through the DOC and DPF was studied. Parameters such as EGR (Exhaust Gas Recirculation) and the main injection timing were varied in part load conditions and evaluated using the engine-out emissions. The DMS500 (Differential Mobility Spectrometer) was used as a particle measurement instrument that can measure particle concentrations from 5 nm to 1000 nm. Nano-particles of sizes less than 30 nm were reduced by oxidation or coagulated with solid particles in the tail-pipe and DOC. The DPF has a very high filtration efficiency over all operating conditions except during natural regeneration of DPF.

A Study on Prediction of Flow Characteristics and Performance of a Heavy-Duty Diesel Engine with Continuously Regenerating Method PM Reduction (대형디젤기관에서 연속재생방식 PM저감장치장착에 따른 유동 및 성능에 관한 수치해석적 연구)

  • Han, Young-Chool;Moon, Byung-Chul;Oh, Sang-Ki;Baik, Doo-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.52-57
    • /
    • 2005
  • The increasing automobiles continue to cause air-pollution problem s worse than ever. In fact, many automobile research are involved in how to reduce exhaust emissions effectively specially in $NO_X$ and PM to comply with stringent emission standards, Euro V. This research emphasized on the development of continuous regeneration DPF technology which was one of promising removing technology of particulate matters because of its comparability and high applicability. In addition, this research discussed on some design points of view through correlation study by com paring the experimental data with computational results by the introduction of commercial codes such as CFD-ACE+ and KIVA-3V. The numerical simulation on the performance of continuous regeneration DPF apparatus and corresponding emission characteristics has been predicted well enough and verified with experimental results. The pressure and average temperatures are decreased to about 2.6% and 1.4% respectively under a full engine load condition mainly due to back pressures raised by diesel particulate filter. Pressure, temperature and heat releasing rates tend to decrease specially at higher engine load, but they are not affected at lower engine load regions.