• Title/Summary/Keyword: DOT-3

Search Result 615, Processing Time 0.029 seconds

Effect of CuO on the Microstructural and Electrical Properties of (Pb)(La,Nd)$TiO_3$ Ceramics (CuO가 (Pb)(La,Nd)$TiO_3$ 세라믹스에 첨가시 미세구조와 전기적 특성에 미치는 영향)

  • Min, S.K.;Yoo, J.H.;Park, C.Y.;Yoon, H.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.446-450
    • /
    • 2001
  • In this study, microstructural and electrical properties of (Pb)(La,Nd)$TiO_3$ cerramics were investigated as a function of CuO addition. Taking into consideration Tc of $325^{\circ}C$, dynamic range of 49dB( at the wafer form) and density of $7.71g/cm^{3}$, it can be concluded that the specimen S2 sintered at $1200^{\circ}C$ is the best for the resonator application, Dynamic characteristics of energy-trapped 20MHz SMD type resonator as a function of internal dot size variation were also investigated. Dynamic range characteristics showed the highest value of 60.72dB at S2-4(dot size 1.13mm).

  • PDF

Effect of CuO on the Microstructural and Electrical Properties of (Pb)(La,Nd)$TiO_3$ Ceramics (CuO가 (Pb)(La,Nd)$TiO_3$ 세라믹스에 첨가시 미세구조와 전기적 특성에 미치는 영향)

  • 민석규;류주현;박창엽;윤현상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.446-450
    • /
    • 2001
  • In this study, microstructural and electrical properties of (Pb)(La,Nd)TiO$_3$ ceramics were investigated as a function of CuO addition. Taking into consideration Tc of 3$25^{\circ}C$, dynamic range of 49dB( at the wafer form) and density of 7.71g/㎤, it can be concluded that the specimen S2 sintered at 120$0^{\circ}C$ is the best for the resonator application. Dynamic characteristics of energy-trapped 20MHz SMD type resonator as a function of internal dot size variation were also investigated. Dynamic range characteristics showed the highest value of 60.72dB at S2-4(dot size 1.13mm).

  • PDF

Fabrication of Silicon Quantum Dots in Si3N4 Matrix Using RF Magnetron Co-Sputtering (RF 마그네트론 코스퍼터링을 이용한 Si3N4 매트릭스 내부의 실리콘 양자점 제조연구)

  • Ha, Rin;Kim, Shin-Ho;Lee, Hyun-Ju;Park, Young-Bin;Lee, Jung-Chul;Bae, Jong-Seong;Kim, Yang-Do
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.606-610
    • /
    • 2010
  • Films consisting of a silicon quantum dot superlattice were fabricated by alternating deposition of silicon rich silicon nitride and $Si_3N_4$ layers using an rf magnetron co-sputtering system. In order to use the silicon quantum dot super lattice structure for third generation multi junction solar cell applications, it is important to control the dot size. Moreover, silicon quantum dots have to be in a regularly spaced array in the dielectric matrix material for in order to allow for effective carrier transport. In this study, therefore, we fabricated silicon quantum dot superlattice films under various conditions and investigated crystallization behavior of the silicon quantum dot super lattice structure. Fourier transform infrared spectroscopy (FTIR) spectra showed an increased intensity of the $840\;cm^{-1}$ peak with increasing annealing temperature due to the increase in the number of Si-N bonds. A more conspicuous characteristic of this process is the increased intensity of the $1100\;cm^{-1}$ peak. This peak was attributed to annealing induced reordering in the films that led to increased Si-$N_4$ bonding. X-ray photoelectron spectroscopy (XPS) analysis showed that peak position was shifted to higher bonding energy as silicon 2p bonding energy changed. This transition is related to the formation of silicon quantum dots. Transmission electron microscopy (TEM) and electron spin resonance (ESR) analysis also confirmed the formation of silicon quantum dots. This study revealed that post annealing at $1100^{\circ}C$ for at least one hour is necessary to precipitate the silicon quantum dots in the $SiN_x$ matrix.

In2S3 Co-Sensitized PbS Quantum Dot Solar Cells

  • Basit, Muhammad Abdul;Park, Tae Joo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.273-273
    • /
    • 2014
  • Quantum-dot sensitized solar cells (QDSCs) are an emerging class of solar cells owing to their easy fabrication, low cost and material diversity. Despite of the fact that the maximum conversion efficiency of QDSCs is still far less than that of Dye-Sensitized Solar Cells (>12 %), their unique characteristics like Multiple Exciton Generation (MEG), energy band tune-ability and tendency to incorporate multiple co-sensitizers concurrently has made QDs a suitable alternative to expensive dyes for solar cell application. Lead Sulfide (PbS) Quantum dot sensitized solar cells are theoretically proficient enough to have a photo-current density ($J_{sc}$) of $36mA/cm^2$, but practically there are very few reports on photocurrent enhancement in PbS QDSCs. Recently, $Hg^{2+}$ incorporated PbS quantumdots and Cadmium Sulfide (CdS) co-sensitized PbS solarcells are reported to show an improvement in photo-current density ($J_{sc}$). In this study, we explored the efficacy of $In_2S_3$ as an interfacial layer deposited through SILAR process for PbS QDSCs. $In_2S_3$ was chosen as the interfacial layer in order to avoid the usage of hazardous CdS or Mercury (Hg). Herein, the deposition of $In_2S_3$ interfacial layer on $TiO_2$ prior to PbS QDs exhibited a direct enhancement in the photo-current (Isc). Improved photo-absorption as well as interfacial recombination barrier caused by $In_2S_3$ deposition increased the photo-current density ($J_{sc}$) from $13mA/cm^2$ to $15.5mA/cm^2$ for single cycle of $In_2S_3$ deposition. Increase in the number of cycles of $In_2S_3$ deposition was found to deteriorate the photocurrent, however it increased $V_{oc}$ of the device which reached to an optimum value of 2.25% Photo-conversion Efficiency (PCE) for 2 cycles of $In_2S_3$ deposition. Effect of Heat Treatment, Normalized Current Stability, Open Circuit Voltage Decay and Dark IV Characteristics were further measured to reveal the characteristics of device.

  • PDF

Design of XOR Gate Based on QCA Universal Gate Using Rotated Cell (회전된 셀을 이용한 QCA 유니버셜 게이트 기반의 XOR 게이트 설계)

  • Lee, Jin-Seong;Jeon, Jun-Cheol
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.3
    • /
    • pp.301-310
    • /
    • 2017
  • Quantum-dot cellular automata(QCA) is an alternative technology for implementing various computation, high performance, and low power consumption digital circuits at nano scale. In this paper, we propose a new universal gate in QCA. By using the universal gate, we propose a novel XOR gate which is reduced time/hardware complexity. The universal gate can be used to construct all other basic logic gates. Meanwhile, the proposed universal gate is designed by basic cells and a rotated cell. The rotated cell of the proposed universal gate is located at the central of 3-input majority gate structure. In this paper, we propose an XOR gate using three universal gates, although more than five 3-input majority gates are used to design an XOR gate using the 3-input majority gate. The proposed XOR gate is superior to the conventional XOR gate in terms of the total area and the consumed clock because the number of gates are reduced.

An Experimental Study on the Performance of Diffusion Bonding Heat Exchangers (확산접합 콤팩트 열교환기의 성능에 관한 실험적 연구)

  • Kwon, Oh-Kyung;Cha, Dong-An;Yun, Jae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.1
    • /
    • pp.53-59
    • /
    • 2009
  • The objectives of this paper are to study the characteristics of heat transfer and pressure drop of the micro channel heat exchangers using diffusion bonding technology. Four types of heat exchangers are designed and manufactured, which are straight type, long dot type, splited wavy type and straight double side type. Heat transfer and pressure drop performance of each heat exchangers are measured in various operating conditions, and compared each other. The results show that the $(j/f)^{1/3}$ performance of splited wavy type and long dot type increases about 10.3% and 6.1% at the Reynolds number 470 compared to that of straight type, respectively. On the other hand, $(j/f)^{1/3}$ performance of straight double side type decreases 19.7%.

An Experimental Study on the Performance of Diffusion Bonding Heat Exchangers (확산접합 콤팩트 열교환기의 성능에 관한 실험적 연구)

  • Kwon, Oh-Kyung;Cha, Dong-An;Choi, Mi-Jin;Yun, Jae-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2304-2309
    • /
    • 2008
  • The objectives of this paper are to study the characteristics of heat transfer and pressure drop of the micro channel heat exchangers using diffusion bonding technology. Four types of heat exchangers are designed and manufactured, which are straight type, long dot type, splited wavy type and straight double side type. Heat transfer and pressure drop performance of each heat exchangers are measured in various operating conditions, and compared each other. The results show that the $(j/f)^{1/3}$ performance of splited wavy type and long dot type increases about 10.3% and 6.1% at the Reynolds number 470 compared to that of straight type, respectively. On the other hand, $(j/f)^{1/3}$ performance of straight double side type decreases 19.7%.

  • PDF

Curing period affect the occurrence of black dot, weight loss and sprouting of potato tubers during storage

  • Chang, Dong Chil;Jin, Yong Ik;Jee, Sam Nyu;Nam, Jung Hwan;Yoo, Dong Lim;Cheon, Chung Gi;Choi, Jong Keun;Kim, Su Jeong;Yu, Hong-Seob
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.242-242
    • /
    • 2017
  • A potato cultivar, Haryeong, was released for table stock in 2005 and has been supplied to farmers since 2010. Black dot has been known as a disease causing tuber blemishes in the cultivar, which is primarily an issue in storage. To investigate the effect of curing periods on disease occurrence, four periods (1, 3, 6 and 9 weeks) of curing were applied on Haryeong tubers harvested from the highlands (800 m a.s.l) in September. Tubers were stored at $2-3^{\circ}C$ and 80-90% RH for 6-7 months and were visually checked for disease occurrence. Tuber infection was characterized by barely visible small black spots on tubers and dark sooty lesions in stolon end of tubers. Another symptoms were observed on the upper surface of tubers which showed irregular, small to large, and depressed areas of brown to blackish skin with necrotic lesions inside. Results showed decrease in black dot depending on the curing period that ranges 18-48, 3-35, 0-14 and 0-3% at 1, 3, 6 and 9 weeks curing, respectively. During the storage, however, percentage weight loss of tubers and percentage of tubers with sprouts increased slightly with increasing the curing period from 1-3 to 6-9 weeks.

  • PDF

Efficiency enhancement of spray QD solar cells

  • Park, Dasom;Lee, Wonseok;Jang, Jinwoong;Yim, Sanggyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.420.1-420.1
    • /
    • 2016
  • Colloidal quantum dot (CQD) is emerging as a promising active material for next-generation solar cell applications because of its inexpensive and solution-processable characteristics as well as unique properties such as a tunable band-gap due to the quantum-size effect and multiple exciton generation. However, the most widely used spin-coating method for the formation of the quantum dot (QD) active layers is generally hard to be adopted for high productivity and large-area process. Instead, the spray-coating technique may potentially be utilized for high-throughput production of the CQD solar cells (CQDSCs) because it can be adapted to continuous process and large-area deposition on various substrates although the cell efficiency is still lower than that of the devices fabricated with spin-coating method. In this work, we observed that the subsequent treatment of two different ligands, halide ion and butanedithiol, on the lead sulfide (PbS) QD layer significantly enhanced the cell efficiency of the spray CQDSCs. The maximum power conversion efficiency was 5.3%, comparable to that of the spin-coating CQDSCs.

  • PDF