• Title/Summary/Keyword: DOF(degree of freedom)

Search Result 347, Processing Time 0.032 seconds

Design of Vehicle Stability Control Algorithm Based on 3-DOF Vehicle Model (3자유도 차량모델 기반 차량 안정성 제어 알고리듬 설계)

  • Chung Taeyoung;Yi Kyongsu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.83-89
    • /
    • 2005
  • This paper presents vehicle stability control algorithm based on 3-DOF vehicle model. The brake control inputs have been directly derived from the sliding control law based on a three degree of freedom plane vehicle model with differential braking. The simulation has performed using a full nonlinear 3-dimensional vehicle model and the performance of the controller has been compared to that of a direct yaw moment controller. Simulation results show that the proposed controller can provide a vehicle with better performance than conventional controller with respect to brake actuation without compromising stability at critical driving conditions.

Force Display Based on Simultaneous Actuation of Motors and Brakes

  • Kwon, Tae-Bae;Song, Jae-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1131-1135
    • /
    • 2004
  • In the virtual environment, force feedback to the human operator makes virtual experiences more realistic. However, the force feedback using active actuators such as motors can make the system active and sometimes unstable. To ensure the safe operation and enhance the haptic feeling, stability should be guaranteed. Both motors and brakes are commonly used for haptic device. A brake can generate a torque only against its rotation, but it is intrinsically stable. Consequently, motors and brakes are complementing each other. In this research, a two degree-of-freedom (DOF) haptic device equipped with both motors and brakes has been developed to provide better haptic effects. Each DOF is actuated by a pair of motor and brake. Modeling of the environment and the control method are needed to utilize both actuators. For various haptic effects, contact with the virtual wall and representation of friction effect are extensively investigated in this paper. It is shown that the hybrid haptic system is more suited to some applications than the motor-based active haptic system.

  • PDF

Design method for the 2DOF electromagnetic vibrational energy harvester

  • Park, Shi-Baek;Jang, Seon-Jun
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.393-399
    • /
    • 2020
  • In this paper, the design method and experimental validation for the two-degree-of-freedom (2DOF) electromagnetic energy harvester are presented. The harvester consists of the rigid body suspended by four tension springs and electromagnetic transducers. Once the two resonant frequencies and the mass properties are specified, both the constant and the positions for the springs can be determined in the closed form. The designed harvester can locate two resonant peaks close to each other and forms the extended frequency bandwidth for power harvesting. Halbach magnet array is also introduced to enhance the output power. In the experiment, two resonant frequencies are measured at 34.9 and 37.6 Hz and the frequency bandwidth improves to 5 Hz at the voltage level of 207.9 mV. The normalized peak power of 4.587 mW/G2 is obtained at the optimal load resistor of 367 Ω.

Modeling and Multivariable Control of a Novel Multi-Dimensional Levitated Stage with High Precision

  • Hu Tiejun;Kim Won-jong
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • This paper presents the modeling and multivariable feedback control of a novel high-precision multi-dimensional positioning stage. This integrated 6-degree-of-freedom. (DOF) motion stage is levitated by three aerostatic bearings and actuated by 3 three-phase synchronous permanent-magnet planar motors (SPMPMs). It can generate all 6-DOF motions with only a single moving part. With the DQ decomposition theory, this positioning stage is modeled as a multi-input multi-output (MIMO) electromechanical system with six inputs (currents) and six outputs (displacements). To achieve high-precision positioning capability, discrete-time integrator-augmented linear-quadratic-regulator (LQR) and reduced-order linearquadratic-Gaussian (LQG) control methodologies are applied. Digital multivariable controllers are designed and implemented on the positioning system, and experimental results are also presented in this paper to demonstrate the stage's dynamic performance.

2 DOF robust performance controller design for linear system with time delay and parameter uncertainty (시간지연 및 파라미터 불확실성을 갖는 선형 시스템의 2 자유도 견실성능 제어기 설계)

  • 이갑래;정은태;최봉렬;박홍배
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.1
    • /
    • pp.43-53
    • /
    • 1997
  • A robust stability condition for linear systems with time delay in all variables and parameter uncertainties in all system matrices is derived. Robust performance condition that accounts for robust model-matching of closed loop system and disturbance rejection is also derived. Using the robust performance condition, robust $H^{\infty}$ controller and .mu.(sgructured singular value) controller with two-degree-of-freedom(2DOF) are designed. The controller structure is considered for $H^{\infty}$ controller, while uncertainity structure is considered for .mu. controller. Using the proposed method, $H^{\infty}$ and .mu. controllers for underwater vehicle with time delay and parameter variations are designed. Simulations of a design example with hydrodynamic parameter variations and disturbance are presented to demonstrate the achievement of good robust performance.ce.

  • PDF

Development for Tilting Train Dynamics Motion Base

  • Song, Yong-Soo;Shin, Seung-Kwon;Kim, Jung-Seok;Ho, Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1158-1161
    • /
    • 2004
  • This paper describes the construction of a half sphere screen driving tilting simulator that can perform six degree-of-freedom (DOF) motions simulator to a tilting train. The mathematical equations of Tilting Train dynamics are first derived from the 6-DOF bicycle model and incorporated with the bogie, carbody, and suspension subsystems. The equations of motion are then programmed by visual C++ code. To achieve the simulator functions, a motion platform that is constructed by six electric-driven actuators is designed, and its kinetics/inverse kinetics analysis is also conducted. Driver operation signals such as carbady angle, accelerator, and tilting positions are measured to trigger the Tilting dynamics calculation and further actuate the cylinders by the motion platform control program. In addition, a digital PID controller is added to achieve the stable and accurate displacements of the motion platform. The experiments prove that the designed simulator is adequate in performing some special rail road driving situations discussed in this paper.

  • PDF

$H_{\infty}$ Control of a Tracked Vehicle with ER Suspension Units (ER 현수장치를 갖는 궤도차량의 $H_{\infty}$ 제어)

  • Han, Sang-Soo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.251-256
    • /
    • 2000
  • This paper presents dynamic modeling and controller design of a tracked vehicle installed with the double-rod type ERSU(electro-rheological suspension unit). A 16 DOF(degree-of-freedom) model for the tracked vehicle is established by Lagrangian method. After showing the spring and damping characteristics of the proposed ERSU, equivalent 2 DOF 1/12 tracked vehicle model is then formulated by regarding the spring and viscous damping coefficients under the static state as constant values. A robust LSDP(loop-shaping design procedure) $H_{\infty}$ controller compensating spring and damping parameter variations is then designed in order to suppress unwanted vibration of the vehicle. The control responses such as vertical and pitch acceleration are presented in time domain.

  • PDF

Kinematic Characteristics of a 4-RRPaRR Type Schönflies Motion Generator (4-RRPaRR구조의 Schönflies Motion Generator 기구학 특성 분석)

  • Kim, Sung-Mok;Yi, Byung-Ju;Kim, Whee-Kuk
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.1
    • /
    • pp.78-85
    • /
    • 2011
  • This article investigates kinematic characteristics of a Sch$\ddot{o}$nflies motion generator which represents a mechanism having translational three Degree-of-Freedom (DOF) and rotational one-DOF motion about a fixed axis. The mechanism consists of the base plate and the moving plate, and four identical limbs connecting them. Each limb employs two revolute joints (RR), one parallelogram (Pa), and two revolute joints (RR) from the base plate to the moving plate. The mechanism is driven by four actuators which are placed on the base plate to minimize dynamic loads. It is shown through simulations that the mechanism can be designed to secure large dexterous workspace and thus has very high potential for actual applications such as haptic devices and high-speed requiring tasks such as pick-and-place operations, riveting, screwing tasks, etc.

A Study on Implementation of Special-Purpose Manipulator for Home Service Robot (홈 서비스 로봇을 위한 전용 머니퓰레이터의 구현에 관한 연구)

  • Kim, Seung-Woo;Kim, Hi-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5219-5226
    • /
    • 2011
  • A specialized anthropomorphic robot manipulator which can be attached to the housemaid robot McBot II, is developed In this paper. This built-in type manipulator consists of both arms with 3 DOF (Degree of Freedom) each and both hands with 3 DOF each. The robotic arm is optimally designed to satisfy both the minimum mechanical size and the maximum workspace. Minimum mass and length are required for the built-in cooperated-arms system. But that makes the workspace so small. This paper proposes optimal design method to overcome the problem by using neck joint to move the arms horizontally forward/backward and waist joint to move them vertically up/down. The robotic hand, which has two fingers and a thumb, is also optimally designed in task-based concept. Finally, the good performance of the developed manipulator is confirmed through live test of tasks.

Theoretical Investigation of 2DOF Vibrating System and Its Application to Dynamic Vibration Absorber (2자유도 진동계에 관한 이론적 고찰 및 진동흡진기로의 응용)

  • Jang, Seon-Jun;Brennan, M.J.;Rustigh, E.;Jung, Hyung-Jo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.371-377
    • /
    • 2009
  • In this paper, the dynamic characteristic of vibrating system which has translational and rotational degrees of freedom is studied. The moment of inertia of the system is modeled here as the inerter and the equivalent model to the system is proposed using dynamic stiffness method. It is shown that the size of inerter plays a major role to determine the dynamic characteristic of the system. This two degree of freedom system(DOF) is applied as a dynamic vibration absorber(DVA) to the elimination of single peak of main body. The solution for the undamped DVA is presented in analytical form while the damped DVA is designed using fixed point theory. The numerical examples are presented for verifying the methods.