• 제목/요약/키워드: DOC/DPF

검색결과 38건 처리시간 0.026초

CFD에 의한 선박용 DPF/DOC내 배기가스의 유동 균일도 및 특성 연구 (A Study on the Flow Uniformity and Characteristics of Exhaust gas in Diesel Particulate Filter/Diesel Oxidation Catalyst of Ship Diesel Reduction System by Computational Fluid Dynamics)

  • 김윤지;한단비;백영순
    • 청정기술
    • /
    • 제25권2호
    • /
    • pp.153-160
    • /
    • 2019
  • 디젤 선박 운행 횟수의 증가로 인한 대기오염이 심각해짐에 따라 선박의 유해배출가스에 대한 규제가 강화되고 있다. 따라서 선박용 디젤 배기 후처리 장치의 개발이 요구되고 배기 처리 장치는 유동 균일도가 높을수록 처리효율이 증가된다. 본 연구에서는 ANSYS Fluent를 이용하여 기존 저감장치, 저감장치 내부의 Baffle 설치시, 배기가스 유량에 따른 배압과 유동 균일도를 시뮬레이션 하였다. 기존 장치조건에서는 시스템 배압이 38 ~ 40 mbar로 나타났으며, 유동 균일도는 DOC 입구와 출구에서 약 84 ~ 92%로 나타났다. 시스템 내부에 Baffle을 설치한 경우 압력이 상승되고 유속 증가로 인해 유동 균일도가 낮아진다. 배기가스 유량을 $7,548kg\;h^{-1}$에서 $3,772kg\;h^{-1}$로 50% 감소했을 때, 낮은 유속에 의해 DOC 입구와 출구의 유동 균일도는 약 1 ~ 3% 증가했다. DPF의 경우 불균일한 유동이 DOC를 균일하게 거쳐 흐른 후 유입되기 때문에 유동 균일도가 98 ~ 99%로 높게 나타났다.

입자상물질과 Ash양이 디젤매연여과장치 내의 배압 및 유동균일도에 미치는 영향 (Effect of Particulate Matter and Ash Amount on Pressure Drop and Flow Uniformity of Diesel Particulate Filter Reduction System)

  • 김윤지;한단비;서태원;오광철;백영순
    • 청정기술
    • /
    • 제26권1호
    • /
    • pp.22-29
    • /
    • 2020
  • 최근 미세먼지 증가로 인하여 디젤엔진의 배출 규제가 강화됨에 따라 디젤 매연여과장치에 관심이 급증하게 되었으며, 특히 디젤 배기가스 후처리 장치의 고효율화에 대한 기술개발이 더욱 요구되고 있다. 이에 대한 일환으로서 디젤매연여과장치(diesel particulate filter, DPF) 내 배기가스의 유동 균일도를 향상시키고 배압을 낮추어서 배기가스처리 효율을 높이는 연구가 많이 되고 있다. 본 연구에서는 ANSYS Fluent를 이용하여 직경 12"의 DPF와 디젤산화촉매(diesel oxidation catalyst, DOC)를 장착한 디젤 매연여과장치에서의 배기가스의 유속과 온도, DPF IO ratio, Ash와 PM양에 따른 배압에 미치는 영향을 시뮬레이션 하여 배압을 낮추는 최적화 연구를 하였다. 결과로서 배기가스의 온도와 유속이 낮을수록 배압이 낮아졌으며, PM양이 Ash양보다 배압에 더 큰 영향을 주는 것으로 나타냈다. 또한 비대칭 DPF가 대칭 DPF에 비해 배압이 더 낮게 나타냈으나, 유동 균일도의 경우는 다양한 변수에 관계없이 일정하게 나타냈다. european stationary cycle (ESC), european transient cycle (ETC) 조건에서 PM의 정화효율은 비대칭, 대칭 DPF 관계없이 유사하나, particle number (PN)의 정화효율에서는 비대칭 DPF가 대칭 DPF에 비해 높게 나타냈다.

Euro-6 대응 경유 차량의 NOx 저감율 분석 연구 (Research on the NOx Reduction Rate of Diesel Vehicle for Euro-6)

  • 강민경;권석주;서영호
    • 융복합기술연구소 논문집
    • /
    • 제7권1호
    • /
    • pp.15-18
    • /
    • 2017
  • As emission gas regulation of deisel vehicles is strengthened to Euro-6, It becomes difficult to deal with NOx regulated value mainly by EGR without additional after-treatment system. In addition, RDE(Real Driving Emissions) test will be introduced after september 2017. Therefore, It is essential to develop the after-treatment of diesel vehicles which reduce NOx emissions. It is possible to use DOC, DPF, LNT or DOC, DPF and SCR as a after-treatment system for reducing NOx. However, It is expected that the SCR will be applied widely because LNT alone does not have sufficient NOx purification efficiency. In this study, It tried to analyze the efficiency of reducing NOx emissions during the mode test by attaching a NOx sensor to test vehicle. As a result, It was confirmed that NOx emissions was significantly reduce through the after-treatment system from engine. And the NOx reduction efficiency of SCR was about 4.5 times better than DOC, DPF.

자동차용 DPF 차압센서의 신뢰성 평가기준 (Reliability Assessment Criteria of Differential Pressure Sensor for DPF)

  • 정우영;민준원;박동규;최정운;최우석;김시동
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제15권1호
    • /
    • pp.67-75
    • /
    • 2015
  • Differential pressure sensor for DPF (Diesel Particulate Filter) is the important part of a automobile exhaust system. This device measures the pressure of before DOC and after DPF to determine whether the DPF regenerate. In this paper reliability assessment criteria for DPF differential pressure sensor are established on terms of quality calcification test and lifetime test. The former quality certification test comprises general performance test and environmental test. Items which pass the test undergo lifetime test which guarantees the extent of mean lifetime with certain confidence.

단기통 디젤엔진에서 LNT/DPF + SCR/DPF 하이브리드 시스템의 NOx 및 PM 동시저감 특성 (Characteristics of Simultaneous Removal of NOx and PM over a Hybrid System of LNT/DPF + SCR/DPF in a Single Cylinder Diesel Engine)

  • 강우석;박수한;최병철
    • 한국자동차공학회논문집
    • /
    • 제24권2호
    • /
    • pp.152-160
    • /
    • 2016
  • The market demand for diesel engine tends to increase in general passenger cars as well as commercial vehicles because of its advantages. However, to meet the vehicle emissions regulation which will be more stringent in the future, it is necessary to plurally apply all after-treatment technologies such as diesel oxidation catalyst (DOC), catalyzed diesel particulate filter (CDPF), lean NOx trap (LNT) and selective catalytic reduction (SCR), and so on. Accordingly, the exhaust after-treatment system for diesel vehicle requires the technology of minimizing the numbers of catalysts by integrating every individual catalysts. The purposes of this study is to develop hybrid exhaust after-treatment device system which simultaneously uses LNT/DPF and SCR/DPF catalyst concurrently reducing NOx and particulate matter (PM). As the results, the hybrid system with $NH_3$ generated at LNT/DPF working as a reducing agent of SCR/DPF catalyst, improving NOx conversion rate, was found to be more excellent in de-NOx performance than that in LNT/DPF alone system.

연속재생 DPF의 재생 성능에 미치는 차량 운행패턴의 영향 (Influence of Driving Pattern on Regeneration Performance of Continuously Regenerating Diesel Particulate Filter)

  • 황진우;이창식
    • 대한기계학회논문집B
    • /
    • 제33권5호
    • /
    • pp.358-364
    • /
    • 2009
  • This paper is to investigate the influence of driving patterns of slow and high speed vehicles on the performance of continuously regenerating diesel particulate filter(DPF) system matched with operating conditions in field application. The DPF performance test for field application was carried out for two identical DPFs installed to slow and high speed vehicles. A slow speed vehicle was selected among local buses which have driving patterns to repeat running and stop frequently, while a high speed vehicle was prepared to have long route of high speed over 60km/h like inter-city buses. In this test, the regeneration performance on the DPF of slow speed vehicle deteriorated because of high soot load index(SLI) in spite of same balance point temperature(BPT) distribution for high speed vehicle. The DPF of slow speed vehicle melted in the end because the rapid increase of back pressure caused high temperature over $1200^{\circ}C$ in the ceramic wall of DPF. The PM components like ash collected to the filter in the DPF were analyzed in order to investigate the cause of the defect and provide an operation performance of DPF system. In the result of the analysis, high levels of lubrication oil ash(Ca, Mg, P, Zn) were detected.

스크린 필터 구조 Partial Metal DPF의 PM 저감 특성 (PM Reduction Characteristics of Partial Metal DPF with Screen Mesh Filter Structure)

  • 김충희;김현철;이기수;최정황;전문수;신석신;서현규
    • 한국자동차공학회논문집
    • /
    • 제21권3호
    • /
    • pp.82-87
    • /
    • 2013
  • In this work, the 1L grade integrated metal DOC/DPF filter that can install in engine manifold position was developed to investigate the effect of platinum-coating amount of filter on the improvement of filter activation temperature and reduction of particulate matter (PM). This filter was installed in 2.9L CI engine which meets the EURO-4 emission regulation. Tests for PM reduction efficiency of filter were conducted under ND-13 mode with full-load test condition. It was revealed that the time to reach the activation temperature of metal filter ($280^{\circ}C$) was shorter as the amount of platinum-coating increased. This short activation time can be helpful for the reduction of CO and HC emissions during cold start condition. At the same time, PM reduced as the coating amount increased. The reduction percentage of $DOC_{40}$, $DOC_{20}$, and $DOC_0$ were 96.7% (2.34 mg/kW'h), 95.1% (3.47 mg/kW'h), and 94.5% (3.69 mg/kW'h) compared to previous result (71.4 mg/kW'h), respectively.

후처리장치 성능 평가를 위한 Dump Combustor의 활용 (The Application of Dump Combustor for Evaluation of After-Treatment System)

  • 남연우;이원남;오광철;이춘범
    • 한국연소학회지
    • /
    • 제12권3호
    • /
    • pp.16-23
    • /
    • 2007
  • Employing an after-treatment system has almost become a mandatory requirement for Diesel vehicles, which results from a reinforced exhaust regulations as the number of vehicles powered by a Diesel engine increases. The Diesel Particulate Filter (DPF) system is considered as one of the most efficient method to reduce particulate matter (PM); however, the improvement of a regeneration performance at any engine operation point presents a considerable challenge by itself. Temperature, gas composition and flow rate of exhaust gas are important parameters in DPF evaluation processes, especially during a regeneration process. Engine dynamometer and segment tester are generally used in DPF evaluation so far. These test methods, however, could not completely evaluate the effect of various parameters on real DPF, such as oxygen concentration, amount of soot and exhaust gas temperatures. The evaluation of DPF systems using a dump combustor has been verified experimentally and this dump combustor system is likely to be appropriate for the DOC (Diesel Oxidation Catalyst) and SCR (Selective Catalytic Reduction) assessments test, too.

  • PDF

비도로용 디젤엔진의 Urea SCR system 적용을 위한 NO2/NOx ratio 예측모델 개발에 관한 연구 (Development of NO2/NOx Ratio Estimation Model for Urea-SCR System Application on Non-road Diesel Engine)

  • 강석호;김훈명;강정호;박은용;권오현;김대열
    • 한국분무공학회지
    • /
    • 제25권4호
    • /
    • pp.178-187
    • /
    • 2020
  • The current emission regulations, US Tier-4 and EU Stage-V, are only able to satisfy the regulations when all currently mass-produced emission reduction technologies such as EGR, DOC, DPF, and SCR are applied. Therefore, in this study, for the application of the Urea-SCR system to non-road diesel engines, the database was established by measuring the NO, NO2 concentration and calculating the NO2/NOx ratio based on the catalyst temperature and exhaust mass flow rate. Also, based on the measured NO2/NOx ratio data, a mathematical model was proposed to predict the NO2/NOx ratio at SCR catalyst, and the suitability of the model was verified through steady-state and transient mode. As a result of comparing the NO2/NOx ratio measured at the DOC outlet under the steady-state condition to two model values separately, the R2 was 0.9811 for the 3D map model and 0.9303 for the mathematical model. And in the case of the NO2/NOx ratio measured at the DPF outlet, the R2 was 0.9797 for the 3D map model and 0.935 for the mathematical model. It was confirmed that the R2 with the model value of the 3D Map of the mathematical model in the transient mode is 0.957, which shows high reliability.

승용 디젤 엔진의 후처리 시스템 적용에 따른 나노입자 배출 맵 구축 및 저감특성에 관한 연구 (Study of Particle Emission Contour Construction & Characteristics and Reduction Efficiency of Exhaust-Treatment System of Diesel Engine)

  • 고아현;황인구;명차리;박심수;최회명
    • 대한기계학회논문집B
    • /
    • 제34권8호
    • /
    • pp.755-760
    • /
    • 2010
  • 본 연구는 승용 디젤엔진의 입자상 물질 배출특성에 관한 것으로써, 엔진에서 배출된 입자상 물질이 배기관 및 후처리장치인 디젤산화촉매와 매연여과장치를 통과할 때의 특성 변화를 파악하기 위하여 후처리장치 각각 전 후단 및 배기관에서 직접 측정하였다. 또한 다양한 엔진회전속도 및 부하조건에서 측정함으로써 입자상 물질 배출 맵을 구축하였으며, 디젤산화촉매 및 매연여과장치의 입자상 물질 저감효과에 대해 평가하였다. 뿐만 아니라 배기재순환율과 연료분사시기를 변경시켜 입자상 물질의 배출특성 변화를 파악하였다. 모든 시험에서 입자상 물질을 5~1000nm 크기까지 측정할 수 있는 DMS500을 이용하였다.