• Title/Summary/Keyword: DOAS(Differential Optical Absorption Spectroscopy)

Search Result 30, Processing Time 0.024 seconds

Air Pollution Measurement and Analysis using a Differential Optical Absorption Spectroscopy (Differential Optical Absorption Spectroscopy를 이용한 대기오염 측정 및 분석)

  • 김상우;원재광;박기학;윤순창;홍천상
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.5
    • /
    • pp.375-384
    • /
    • 2001
  • Optical remote sensing techniques are particularly advantageous over the conventional fixed point methods because with these methods large-area monitoring can be possible and sample preparation difficulties are avoidable. Instruments based on the differential optical absorption spectroscopy (DOAS) technique are widely used for monitoring air pollutants in urban areas in recent years. In this study, $O_3$, SO$_2$, NO$_2$, and VOCs (benzene, toluene, xylene, and styrene) are measured continuously at Sihwa industrial area using a DOAS from February to November. 1999. Intercomparison between the DOAS method and the conventional methods (filed point samplers for $O_3$, NO$_2$, and SO$_2$, and adsorbent sampling methods and gas chromatography for VOCs) are performed simultaneously at the same site. The time series of the DOAS data and that of fixed point method show good match at the view point of the tendency, but the absolute concentration values of these two methods differ quite a lot from each other; correlation coefficients shows 0.78 for $O_3$and 0.97 for SO$_2$. However, the results of VOCs measurements are not quite satisfactory ; the spectral interference with $O_2$and $O_3$appears to be the major cause of the errors for VOCs .

  • PDF

Remote Sensing of Atmospheric Trace Species using Multi Axis Differential Optical Absorption Spectroscopy (Multi Axis DOAS를 이용한 대기미량 물질 원격 측정)

  • Lee Chul-Kyu;Kim Young-Joon
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.2
    • /
    • pp.141-151
    • /
    • 2006
  • UV-visible absorption measurement techniques using several horizone viewing directions in addition to the traditional zenith-sky pointing have been recently developed in ground-based remote sensing of atmospheric constituents. The spatial distribution of various trace gases close to the instrument can be derived by combing several viewing directions. Multi-axis differential optical absorption spectroscopy (MAX-DOAS) technique, one of the remote sensing techniques for air quality measurements, uses the scattered sunlight as a light source and measures it at various elevation angles (corresponding to the viewing directions) by sequential scanning with a stepper motor. A MAX-DOAS system developed by GIST/ADEMRC has been applied to measuring trace gases in urban air and plumes of the volcano and fossil fuel power plant in January, May, and October 2004, respectively. MAX-DOAS spectra were analyzed to identify and quantify $SO_2,\;NO_2,\;BrO,\;and\;O_4$ (based on Slant Column Densities, SCD) in the urban air, volcanic plume, and fossil fuel power plant utilizing theirs specific structured absorption features in the UV-visible region. Vertical scan through the multiple elevation angles was performed at different directions perpendicular to the plume dispersion to retrieve cross-sectional distribution of $SO_2\;or\;NO_2$ in the plumes of the volcano and fossil fuel power plant. Based on the estimated cross sections of the plumes the mixing ratios were estimated to 580 $SO_2$ ppbv in the volcanic Plume, and 337 $NO_2\;and\;227\;SO_2$ ppbv in the plume of the fossil fuel power plant, respectively.

Development of Concurrent Multi Path (CMP)-Differential Optical Absorption Spectroscopy (DOAS) for Remote Sensing of Surface Atmospheric Gases (지표면 대기중 가스상오염물질 다경로 동시 원격 모니터링을 위한 CMP-DOAS 개발: 첫 개발 사례 및 이산화질소 측정 연구)

  • Lee, Han-Lim;Hwang, Jung-Bae;Kim, Jhoon;Noh, Young-Min;Won, Yong-Kwan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.4
    • /
    • pp.412-419
    • /
    • 2010
  • Concurrent Multi Path-Differential Optical Absorption Spectroscopy (CMP-DOAS) is a novel active optical system to measure simultaneously ambient trace gases (such as $NO_2$, $SO_2$, $O_3$, and HCHO) present on several light paths. The CMP-DOAS system consists of a 2D CCD camera, spectrometer, receiving telescopes, and artificial light sources. The system receives spectra, which have been transported through several paths. It also covers wavelength ranges of which trace gases of interest share at the same time. This study presents the instrumental setup of a CMP-DOAS in detail. A field campaign for a comparative measurement was carried out at an urban site in Gwangju for a month on January 2009. $NO_2$ mixing ratios measured by the CMP-DOAS system and in-situ $NO_2$ analyzers were in good agreement by 83%. It demonstrates the high capacities of the CMP-DOAS technique to cover atmospheric trace gases dispersed across wide light paths.

Measurement of Atmospheric BTX in Seoul Using Differential Optical Absorption Spectroscopy (차등흡수 분광법을 이용한 서울 대기 중 BTX 측정)

  • Lee Chulkyu;Choi Yeo Jin;Lee Jeong Soon;Jung Jin Sang;Kim Young Joon;Kim Ki Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.1
    • /
    • pp.1-14
    • /
    • 2005
  • In this study, a Long Path Differential Optical Absorption Spectroscopy system (K-JIST LP-DOAS) has been used to simultaneously measure atmospheric monoaromatic hydrocarbons and other trace compounds. The validity of the K-JIST LP-DOAS for measuring atmospheric monoaromatic hydrocarbons was tested during a field campaign between 12 February and 14 March 2003 at an urban site in Seoul, Korea through inter-comparative measurements against a collocated on-line Gas Chromatography (GC) system. The concentrations of benzene, toluene, p-xylene, and m-xylene were measured with the K-JIST LP-DOAS system in the UV region (239~302 nm) over a 740 m beam path. For the other trace compounds, a longer spectral range (299~362 nm) was used. In order to remove the interference of atmospheric abundant species (such as oxygen, sulfur dioxide and ozone), two oxygen optical density spectra obtained at two pathlengths, 697 and 1133m, and reference spectra of sulfur dioxide and ozone were incorporated in the fitting procedure. The mean concentrations measured by our LP-DOAS during the measurement period were 0.77 ($\pm$0.38) ppbv for benzene, 3.68 ($\pm$1.90) ppbv for toluene, 0.41 ($\pm$0.19) ppbv for p-xylene, 0.54 ($\pm$0.24) ppbv for m-xylene. The concentration data of benzene, toluene, p-xylene and m-xylene obtained by our LP-DOAS were found to be in relatively good correlations with those of the online GC system. Pearson's coefficients in the observed concentrations between LP-DOAS and on-line GC were 0.84 for benzene, 0.83 for toluene and 0.65 for m,p-xylene. This study suggests that the LP-DOAS system can be used to provide reliable information on both the mixing ratios and temporal distribution characteristics of monoaromatic hydrocarbons in the urban air.

First Simultaneous Visualization of SO2 and NO2 Plume Dispersions using Imaging Differential Optical Absorption Spectroscopy

  • Lee, Hanlim;Noh, Youngmin;Kwon, Soonchul;Hong, Hyunkee;Han, Kyung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1191-1194
    • /
    • 2014
  • Imaging Differential Optical Absorption Spectroscopy (Imaging-DOAS) has been utilized in recent years to provide slant column density (SCD) distributions of several trace gas species in the plume. The present study introduces a new method using Imaging-DOAS data to determine two-dimensional plume structure from the plume emissions of power plant in conditions of negligible aerosol effects on radiative transfer within the plume. We demonstrates for the first time that two-dimensional distributions of sulfur dioxide ($SO_2$) and nitrogen dioxide ($NO_2$) in power plant emissions can be determined simultaneously in terms of SCD distribution. The $SO_2$ SCD values generally decreased with increasing distance from the stack and with distance from the center of the plume. Meanwhile, high $NO_2$ SCD was observed at locations several hundred meters away from the first stack due to the ratio change of NO to $NO_2$ in NOx concentration, attributed to the NO oxidation by $O_3$. The results of this study show the capability of the Imaging-DOAS technique as a tool to estimate plume dimensions in power plant emissions.

Air Pollution Measurement using a Differential Optical Absorption Spectrometer, DOAS-3R (차등분광흡수계(DOAS)를 이용한 대기 오염 원격 측정)

  • Lee, Jung-Soon;Lee, Hoon;Lee, Chul-Gyu;Bae, Min-Seok;Kim, Young-Jun
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.04a
    • /
    • pp.328-329
    • /
    • 2000
  • 대단위 공단이나 대도시 등의 환경오염물질의 배출이 심각한 지역이 증가함에 따라 다양한 종류의 대기오염물질이 배출되고 이에 따른 효율적 관리가 필요하게 되었다. 현재 유해가스의 검출방식은 촉매와의 반응을 이용한 화학적 측정방법으로부터 유해가스의 광학적 성질을 이용한 광학적 측정방법으로 그 기술이 발전되고 있다. 본 연구에서는 광투과 방식 중 Differential Optical Absorption Spectroscopy(DOAS)를 사용했으며 이는 실시간 오염물질의 이동 경로나 오염원을 찾을 수 있다. (중략)

  • PDF

Development of an Imaging-DOAS System for 2-D Remote Sensing of Atmospheric Gases (대기가스오염물질의 이차원 원격 모니터링을 위한 Imaging-DOAS 개발)

  • Lee, Han-Lim;Lee, Chul-Kyu;Jung, Jin-Sang;Park, Jeong-Eun;Kim, Young-Joon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.150-157
    • /
    • 2006
  • Spatially resolved remote identification and quantification of trace gases in the atmosphere is desirable in various fields of scientific research as well as in public security and industrial contexts. Environmental observations investigating causes, extent md consequences of air pollution are of fundamental interest. We present an Imaging-DOAS system, a ground based remote sensing instrument that allows spatially resolved mapping of atmospheric trace gases by a differential optical absorption spectroscopy(DOAS) with sun scattered light as the light source. A passive DOAS technique permits the identification and quantification of various gases, e.g., $NO_2,\;SO_2,\;and\;CH_2O$, from their differential absorption structures with high sensitivity. The Imaging-DOAS system consists of a scanning mirror, a focusing lens, a spectrometer, a 2-D CCD, ad the integral control software. An imaging spectrometer simultaneously acquires spectral information on the incident light in one spatial dimension(column) and sequentially scans the next spatial dimension with a motorized scanning mirror. The structure of the signal acquisition system is described in detail and the evaluation method is also briefly discussed. Applications of imaging of the $NO_2$ contents in the exhaust plumes from a power plant are presented.

Real-time Monitoring of Criteria Air Pollutants Using a DOAS System (DOAS 시스템을 이용한 대기 환경 기준물질 실시간 측정)

  • ;;Yujun Zhang
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2001.11a
    • /
    • pp.354-355
    • /
    • 2001
  • DOAS (Differential Optical Absorption Spectroscopy) System은 대기 중에 존재하는 기준물질들이 특정 파장영역에서 빛을 흡수하는 원리를 이용하고 있다. 현재 독일을 중심으로 한 유럽과 선진국에서는 대기 환경 기준물질의 모니터링 기술들이 주로 광 투과방식을 이용한 Open path의 모니터링 기술들을 개발하고 있다. 기존의 측정 방법과 Open Path 모니터링의 기법을 비교 할 때 Open path 시스템은 실시간 측정 및 분석이 가능하므로 기존의 화학적 측정방법에서 제기되어져왔던 화학 반응시의 방해 물질의 간섭제거 및 시간 분해도 향상등에 큰 장점이 있다. (중략)

  • PDF

A study on the air quality of Si-wha area using DOAS(Differential Optical Absorption Spectroscopy) (DOAS를 이용한 시화지구의 대기질 측정 연구)

  • 윤순창;원재광;김상우
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.108-109
    • /
    • 1999
  • 우리나라는 1960년대부터 시작된 산업화와 도시화의 결과 대도시, 공업단지의 대기오염이 매우 심각한 상황으로 최근 들어 대기질 개선을 위하여 유해 물질에 대한 배출을 엄격히 규제하고 있다. Beer-Lambert 법칙에 근거하여 측정 대상 물질에 의한 빛의 흡수가 파장에 따라 달라지는 것을 응용한 DOAS 측정 방식을 통한 대기오염의 측정은 선진국에서 이미 1970년대 후반에 연구, 개발되어 왔으나, 우리나라에서는 DOAS 부분의 연구가 매두 미진한 실정이다.(중략)

  • PDF