• 제목/요약/키워드: DO (Dissolved Oxygen)

검색결과 486건 처리시간 0.025초

환경요인이 $Fe^0$ 에 의한 TNT의 환원 반응속도에 미치는 영향 (The Effects of Environmental Conditions on the Reduction Rate of TNT by $Fe^0$)

  • 배범한
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2000년도 창립총회 및 춘계학술발표회
    • /
    • pp.52-55
    • /
    • 2000
  • The effects of environmental conditions, initial dissolved oxygen concentrations, pH, and the presence of electron carrier vitamin B$_{12}$ , on the reduction rate of TNT by Fe$^{0}$ was Quantitatively analyzed using a batch reactor. In all experiments, TNT reduction was best described with a first order reaction and the reduction rate decreased with the increase in the initial DO concentration. However, the specific reaction rate did not decrease linearly with the increase in the initial DO concentration. In the presence of HEPES buffer 0.2 and 2.0 mM(pH 5.7$\pm$0.2), the specific reaction rate increased more than 5.8 times, which showed reduction rate is rather significantly influenced by the pH of the solution. To test the possibility of reaction rate enhancement, well-known electron carrier(or mediator), vitamin B$_{12}$ has augmented besides Fe$^{0}$ . In the presence of 8.0 $\mu\textrm{g}$/L of vitamin B$_{12}$ , the specific reaction rate increased as much as 14.6 times. The results indicate that the addition of trace amount of vitamin B$_{12}$ can be a promising rate controlling option for the removal of organics using a Fe$^{0}$ filled permeable reactive barrier.

  • PDF

동적시간와핑을 이용한 연속회분식 반응기의 장비고장 감지 (Detection of Equipment Faults at Sequencing Batch Reactor Using Dynamic Time Warping)

  • 김예진
    • 한국환경과학회지
    • /
    • 제25권4호
    • /
    • pp.525-534
    • /
    • 2016
  • The biological wastewater treatment plant, which uses microbial community to remove organic matter and nutrients in wastewater, is known as its nonlinear behavior and uncertainty to operate. Therefore, operation of the biological wastewater treatment process much depends on observation and knowledge of operators. The manual inspection of human operators is essential to manage the process properly, however, it is impossible to detect a fault promptly so that the process can be exposed to improper condition not securing safe effluent quality. Among various process faults, equipment malfunction is critical to maintain normal operational state. To detect equipment faults automatically, the dynamic time warping was tested using on-line oxidation-reduction potential (ORP) and dissolved oxygen (DO) profiles in a sequencing batch reactor (SBR), which is a type of wastewater treatment process. After one cycle profiles of ORP and DO were measured and stored, they were warped to the template profiles which were prepared already and the distance result, accumulated distance (D) values were calculated. If the D values were increased significantly, some kinds of faults could be detected and an alarm could be sent to the operator. By this way, it seems to be possible to make an early detecting of process faults.

낙동강 강변여과수 개발부지 지하수 수질의 수직분포 특성

  • 현승규;우남칠;신우식
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.321-325
    • /
    • 2004
  • 국내 충적층의 철, 망간 문제는 지속적으로 지적되어오던 수질항목이다. 충적층 지하수 내 철과 망간의 용존 특성을 확인하고자 강변여과수 부지에서 지하수의 수리지화학적 특성을 조사하였다. Fe와 Mn에 의해 오염된 관정은 D-2와 DS-3로 모두 3월에 채취한 시료이며 NO$_3$-N는 모두 0 m/L 이다. NO$_3$-N에 대해 다른 관정은 2 mg/L NO$_3$-N를 넘고 있으며, DS-8와 DS-3에서 11.30과 20.2 mg/L NO$_3$-N의 값으로 먹는물 수질기준을 초과하고 있다. Mn에 대해 오염된 관정은 SJ-3이다. 10월에 채취한 시료에서 DS-2+l8 m에서 채취한 시료가 1.16 mg/L인 것을 제외하고 대부분의 시료가 2 mg/L를 초과하고 있고, DS-6+l3 m과 SJ-3+10 m에서 채취한 시료가 각각 10.71과 10.31 mg/L NO$_3$-N로 먹는물 수질기준을 초과하고 있다. DO 검층 자료와 NO$_3$-N 농도를 이용하여 Fe와 Mn이 먹는물 수질 기준을 초과하는 D-2와 DS-2 관정의 지하수 체의 혐기성 상태임을 확인하였다. 강변여과수 지역은 전반적으로 NO$_3$-N에 대해 인위적인 오염이 발생하고 있으며, 혐기성 상태 구간이 존재함에 따라서 Fe와 Mn이 먹는물 수질 기준을 초과하여 용존 상태로 존재한다.

  • PDF

추계학적 비선형 모형을 이용한 달천의 실시간 수질예측 (Real Time Water Quality Forecasting at Dalchun Using Nonlinear Stochastic Model)

  • 연인성;조용진;김건흥
    • 상하수도학회지
    • /
    • 제19권6호
    • /
    • pp.738-748
    • /
    • 2005
  • Considering pollution source is transferred by discharge, it is very important to analyze the correlation between discharge and water quality. And temperature also influent to the water quality. In this paper, it is used water quality data that was measured DO (Dissolved Oxygen), TOC (Total Organic Carbon), TN (Total Nitrogen), TP (Total Phosphorus) at Dalchun real time monitoring stations in Namhan river. These characteristics were analyzed with the water quality of rainy and nonrainy periods. Input data of the water quality forecasting models that they were constructed by neural network and neuro-fuzzy was chosen as the reasonable data, and water quality forecasting models were applied. LMNN (Levenberg-Marquardt Neural Network), MDNN (MoDular Neural Network), and ANFIS (Adaptive Neuro-Fuzzy Inference System) models have achieved the highest overall accuracy of TOC data. LMNN and MDNN model which are applied for DO, TN, TP forecasting shows better results than ANFIS. MDNN model shows the lowest estimation error when using daily time, which is qualitative data trained with quantitative data. If some data has periodical properties, it seems effective using qualitative data to forecast.

저질토로부터의 인의 용출거동 예측 및 제어기술 개발 - I. 저질토로부터의 인의 용출거동 예측 (Prediction of Phosphorus Transport from Sediment and Development of Phophorus Control Technology - I. Prediction of Phosphorus Transport from Sediment)

  • 이정엽;강선홍
    • 상하수도학회지
    • /
    • 제13권2호
    • /
    • pp.89-94
    • /
    • 1999
  • In this study small glass columns with 2.5cm inner diameter and 24.5cm length were used as many as the sample numbers to study the effects of initial pH, temperature, dissolved oxygen concentration, and sediment depth on the release of phosphorus from lake sediment. No phosphorus release occurred at $10^{\circ}C$ with all pHs, and release rate at $25^{\circ}C$ was higher than that at $35^{\circ}C$ with pH 4 and reverse trends were observed at pH 7 and 10. Under all conditions, DO concentrations were decreased and equilibrium was obtained after 4-8 days when phosphorus release started and the Do concentrations were less than 1 mg/l. Sediment depth had little effect on phosphorus release rate. It was found that relation between released SRP(Soluble Reactive Phosphorus) concentration and time was zero order reaction and reaction rate coefficients were obtained. The amount of phosphorus release from lake sediment can be predicted by considering these k values.

  • PDF

하천오염인자의 통계적 특성 (Statistical Characteristics of Pollutants in Sterm Flow)

  • 황임구;윤태훈
    • 물과 미래
    • /
    • 제14권4호
    • /
    • pp.19-26
    • /
    • 1981
  • 자연하천에서의 수질은 유량의 변화에 많은 영향을 받을 것으로 기대되는 바, 유량과 각 수질인자의 통계적 특성 및 유량변화와 수질인자간의 상관관계를 조사하기 위하여 자기 및 상호상관함수 power spectrum, coherence 함수 및 Markov 모형을 적용하였다. 일부 자료만이 입수 가능한 한강 하류부 인도교 지점에서의 유량, 용존산소, 전기전도도는 명백한 1년 주기와 6, 4, 3개월의 약한 주기를 가지며, 유량과 용존산소, 유량과 전도도 사이의 상관은 약하게 나타났고 상호상관함수에서 첨두가 지체 1일에서 발생하여 미약하지만 유량의 변화에 의한 영향이 1일 정도 차이로 수질인자에게 미치는 것으로 해석된다. 계열 발생 및 예측수단인 선형회귀모형의 검토에서 유량은 1차 및 2차 Markov 모형과, 용존산소와 전도도는 1차 Markov 모형과 흡사하게 나타났다.

  • PDF

직관내 기포의 흐름에 대한 2차원 수치 모의 (2D Numerical Simulations of Bubble Flow in Straight Pipes)

  • 이태윤;반 틴 응웬
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.386-390
    • /
    • 2016
  • Water aeration is an effective water treatment process, which involves the injection of air or air-water mixture into water treatment reservoir commonly through pipes. The main purpose of water aeration is to maintain healthy levels of dissolved oxygen (DO), which is the most important water quality factor. The pipes' operating conditions are important for controlling the efficiency and effectiveness of aeration process. Many studies have been conducted on two-phase flows in pipes, however, there are a few studies to deal with small s ale in millimeter. The main objective of this study is to perform 2-dimensional two-phase simulations inside various straight pipes using the computational fluid dynamic (CFD) OpenFOAM (Open source Field Operation And Manipulation) tools to examine the influence of flow patterns on bubble size, which is closely related to DO concentration in a water body. The both flow regimes, laminar and turbulence, have been considered in this study. For turbulence, Reynolds-averaged Navier-Stokes (RANS) has been applied. The coalescence and breakage of bubbles caused by random collisions and turbulent eddies, respectively, are considered in this research. Sauter mean bubble diameter and water velocity are compared against experimental data. The simulation results are in good agreement with the experimental measurements.

  • PDF

근소만 갯벌어장 내 바지락의 생존, 성장, 환경을 고려한 서식 적합성 연구 (A Study on the Habitait Suitability Considering Survival, Growth, Environment for Ruditapes philippinarum in Geunso Bay (Pado and Beopsan))

  • 최용현;최윤석;조윤식;김영태;전승렬
    • 해양환경안전학회지
    • /
    • 제22권6호
    • /
    • pp.723-730
    • /
    • 2016
  • 현재 국내바지락 양식 산업은 연안선 변화, 양식 환경악화로 생산량이 감소하는 반면, 수입량 급증으로 인한 어려움에 직면해 있다. 현 실태를 극복하고 지속적인 양식을 위해 서식환경을 종합적으로 이해하는 것이 중요하며, 바지락의 서식환경은 양식장의 생산력과 밀접한 관련이 있다. 본 연구에서는 2015년 6월부터 2016년 5월까지 근소만에 위치한 파도와 법산 갯벌어장에 대하여 생존(입도, 해수유동), 성장(Chlorophyll a, DIN, DIP, 노출시간), 환경(수온, DO, 퇴적물 COD, IL)을 이용하여 서식환경 특성을 구명하였다. 조사결과 파도(최대값; 모래함량 48.76 %, 해수 유속 10.59 cm/s, Chlorophyll a 12.70 ug/L, 노출시간 3시간, DO 18.65 mg/L)는 법산(최대값; 모래함량 37.40 %, 해수 유속 6.02 cm/s, Chlorophyll a 6.41 ug/L, 노출시간 7시간, DO 14.81 mg/L)보다 높은 유속과 모래함량, 풍부한 DO와 영양염으로 바지락 서식에 유리한 조건을 가지고 있었으며, 실제로도 더 높은 서식밀도를 나타내었다. 본 연구는 파도와 법산 바지락 서식지 환경을 파악하여 근소만 갯벌어장의 최적 관리 방안 및 잠재적 적지선정을 위한 기초자료로 활용될 수 있다.

마이크로-나노버블 반응조를 이용한 미생물성장 동력학 계수의 추정에 관한 연구 (Estimation of Kinetic Parameters for Biomass Growth Using Micro-nano Bubbles Reactor)

  • 한영립;정병길;정유진;조도현;성낙창
    • 한국환경과학회지
    • /
    • 제19권5호
    • /
    • pp.647-653
    • /
    • 2010
  • The objectives of this research are to evaluate and compare the oxygen transfer coefficients($K_{La}$) in both a general bubbles reactor and a micro-nano bubbles reactor for effective operation in sewage treatment plants, and to understand the effect on microbial kinetic parameters of biomass growth for optimal biological treatment in sewage treatment plants when the micro-nano bubbles reactor is applied. Oxygen transfer coefficients($K_{La}$) of tap water and effluent of primary clarifier were determined. The oxygen transfer coefficients of the tap water for the general bubbles reactor and micro-nano bubbles reactor were found to be 0.28 $hr^{-1}$ and 2.50 $hr^{-1}$, respectively. The oxygen transfer coefficients of the effluent of the primary clarifier for the general bubbles reactor and micro-nano bubbles reactor were found be to 0.15 $hr^{-1}$ and 0.91 $hr^{-1}$, respectively. In order to figure out kinetic parameters of biomass growth for the general bubbles reactor and micro-nano bubbles reactor, oxygen uptake rates(OURs) in the saturated effluent of the primary clarifier were measured with the general bubbles reactor and micro-nano bubbles reactor. The OURs of in the saturated effluent of the primary clarifier with the general bubbles reactor and micro-nano bubbles reactor were 0.0294 mg $O_2/L{\cdot}hr$ and 0.0465 mg $O_2/L{\cdot}hr$, respectively. The higher micro-nano bubbles reactor's oxygen transfer coefficient increases the OURs. In addition, the maximum readily biodegradable substrate utilization rates($K_{ms}$) for the general bubbles reactor and micro-nano bubbles reactor were 3.41 mg COD utilized/mg active VSS day and 7.07 mg COD utilized/mg active VSS day, respectively. The maximum specific biomass growth rates for heterotrophic biomass(${\mu}_{max}$) were calculated by both values of yield for heterotrophic biomass($Y_H$) and the maximum readily biodegradable substrate utilization rates($K_{ms}$). The values of ${\mu}_{max}$ for the general bubbles reactor and micro-nano bubbles reactor were 1.62 $day^{-1}$ and 3.36 $day^{-1}$, respectively. The reported results show that the micro-nano bubbles reactor increased air-liquid contact area. This method could remove dissolved organic matters and nutrients efficiently and effectively.

바이오가스에 포함된 고농도 황화수소의 효율적 제거를 위한 미생물반응기 (A Bioreactor for the Effective Removal of the Hydrogen Sulfide from Biogas)

  • 남궁형규;윤창노;송지현
    • 한국대기환경학회지
    • /
    • 제29권6호
    • /
    • pp.811-817
    • /
    • 2013
  • A two-stage bioreactor system using sulfur-oxidizing bacteria was studied to abate high strength hydrogen sulfide ($H_2S$) from biogas. The two-stage bioreactor consisted of a $H_2S$ absorption column (0.5 L) and a microbial oxidation column (1 L) in series, and the liquid medium was continuously recirculated through the columns. The objectives of this study were to determine the feasibility of the bioreactor for biogas desulfurization and to investigate the effect of the medium circulation rate on the system performance. An averaged concentration of $H_2S$ introduced to the bioreactor was 530 ppm, corresponding to an overall loading rate of $44.4g/m^3/hr$. During the initial 20 days period at the medium recirculation rate of 8 reactor volumes per hour (12 L/hr), the dissolved oxygen (DO) concentration in the oxidation column was 6 mg/L, while the DO in the absorption column was 0.5 mg/L showing that the oxygen contents of the biogas stream was not altered. Because of the biological oxidation of $H_2S$ in the oxidation column, the sulfate concentration increased from 200 mg/L to 5,600 mg/L in the liquid medium. The removal efficiency of $H_2S$ was greater than 99% in the initial operation period. After the initial period, the medium recirculation rate between the two columns was stepwise changed eight times from 1.0 to 40 vol/hr (1.5~60 L/hr). At the recirculation rate of faster than 4 vol/hr, the $H_2S$ removal efficiencies were found to be high, but the efficiency declined at the lower recirculation rates than the threshold.