• Title/Summary/Keyword: DNS DDoS Attack

Search Result 16, Processing Time 0.016 seconds

A Study of optimized MDS defense against DDoS attack on RFID network (RFID MDS 시스템의 DDoS 공격 가능성 분석과 방어책에 관한 연구)

  • Nam Dong Il;Choi B. J.;Yoo S. W.
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2005.11a
    • /
    • pp.19-24
    • /
    • 2005
  • Radio Frequency Identification (RFID) is a technology used to identify the physical objects and get information about the object on which the tag attaches from network. It is expected that RFID will lead IT market from human-oriented to object-oriented. Therefore, RFID technology and services will become wide-spread. But the system of RFID naming service is quite similar to the existing DNS facilities. So it has many weak points against to DDos attack. Furthermore if the MDS server Is under attack, there might be trouble of total RFID networks.In this paper, we propose a new detecting model to find attack traffic at local routers by using Management Information Base (MIB) which is optimized for RFID MDS server.

  • PDF

A New Bot Disinfection Method Based on DNS Sinkhole (DNS 싱크홀에 기반한 새로운 악성봇 치료 기법)

  • Kim, Young-Baek;Youm, Heung-Youl
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.6A
    • /
    • pp.107-114
    • /
    • 2008
  • The Bot is a kind of worm/virus that can be used to launch the distributed denial-of-service(DDoS) attacks or send massive amount of spam e-mails, etc. A lot of organizations make an effort to counter the Botnet's attacks. In Korea, we use DNS sinkhole system to protect from the Botnet's attack, while in Japan "so called" CCC(Cyber Clean Center) has been developed to protect from the Botnet's attacks. But in case of DNS sinkhole system, there is a problem since it cannot cure the Bot infected PCs themselves and in case of CCC there is a problem since only 30% of users with the Botnet-infected PCs can cooperate to cure themself. In this paper we propose a new method that prevent the Botnet's attacks and cure the Bot-infected PCs at the same time.

A Reliability Improvement Technique of DNS Services Based on Anycast (Anycast 기술을 통한 신뢰적 향상 기법의 DNS 서비스에 관한 연구)

  • Kim, Bo Seung;Kim, Jeong Jai;Kim, Kyung Min;Park, Chan Kil;Shin, Yong Tae
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.4
    • /
    • pp.95-105
    • /
    • 2010
  • DNS(Domain Name System) is a huge distributed database that converts host name to IP address. We are expecting the importance of DNS is more increased because many Internet application services appear according to the continuous increase of Internet users and nearly all the Internet application services use DNS. To prevent the interruption of DNS service, DNS server is configured with primary DNS server and a secondary DNS server which takes the place of primary DNS server in case of the service interruption. But this scheme is difficult for providing DNS service constantly in case of DDoS attack, which brings about much network load or network problems in DNS server group. Therefore, This paper proposed the scheme to locally distribute load of DNS server, and the use of address system to group the distributed DNS servers. Also, it proposed the authentication scheme of the correspondent server in case the server is changed in DNS server group having grouping address. In this paper, it is shown that the prosed scheme guarantees the improved service reliability with maintaining the present service performance through the evaluation. Through this, we can expect the high improved DNS service can be provided in the Internet environment in the future.

Research on Security Threats Emerging from Blockchain-based Services

  • Yoo, Soonduck
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.1-10
    • /
    • 2021
  • The purpose of the study is to contribute to the positive development of blockchain technology by providing data to examine security vulnerabilities and threats to blockchain-based services and review countermeasures. The findings of this study are as follows. Threats to the security of blockchain-based services can be classified into application security threats, smart contract security threats, and network (P2P) security threats. First, application security threats include wallet theft (e-wallet stealing), double spending (double payment attack), and cryptojacking (mining malware infection). Second, smart contract security threats are divided into reentrancy attacks, replay attacks, and balance increasing attacks. Third, network (P2P) security threats are divided into the 51% control attack, Sybil attack, balance attack, eclipse attack (spread false information attack), selfish mining (selfish mining monopoly), block withholding attack, DDoS attack (distributed service denial attack) and DNS/BGP hijacks. Through this study, it is possible to discuss the future plans of the blockchain technology-based ecosystem through understanding the functional characteristics of transparency or some privacy that can be obtained within the blockchain. It also supports effective coping with various security threats.

System Hardening and Security Monitoring for IoT Devices to Mitigate IoT Security Vulnerabilities and Threats

  • Choi, Seul-Ki;Yang, Chung-Huang;Kwak, Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.906-918
    • /
    • 2018
  • The advent of the Internet of Things (IoT) technology, which brings many benefits to our lives, has resulted in numerous IoT devices in many parts of our living environment. However, to adapt to the rapid changes in the IoT market, numerous IoT devices were widely deployed without implementing security by design at the time of development. As a result, malicious attackers have targeted IoT devices, and IoT devices lacking security features have been compromised by attackers, resulting in many security incidents. In particular, an attacker can take control of an IoT device, such as Mirai Botnet, that has insufficient security features. The IoT device can be used to paralyze numerous websites by performing a DDoS attack against a DNS service provider. Therefore, this study proposes a scheme to minimize security vulnerabilities and threats in IoT devices to improve the security of the IoT service environment.

A study on Countermeasures by Detecting Trojan-type Downloader/Dropper Malicious Code

  • Kim, Hee Wan
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.288-294
    • /
    • 2021
  • There are various ways to be infected with malicious code due to the increase in Internet use, such as the web, affiliate programs, P2P, illegal software, DNS alteration of routers, word processor vulnerabilities, spam mail, and storage media. In addition, malicious codes are produced more easily than before through automatic generation programs due to evasion technology according to the advancement of production technology. In the past, the propagation speed of malicious code was slow, the infection route was limited, and the propagation technology had a simple structure, so there was enough time to study countermeasures. However, current malicious codes have become very intelligent by absorbing technologies such as concealment technology and self-transformation, causing problems such as distributed denial of service attacks (DDoS), spam sending and personal information theft. The existing malware detection technique, which is a signature detection technique, cannot respond when it encounters a malicious code whose attack pattern has been changed or a new type of malicious code. In addition, it is difficult to perform static analysis on malicious code to which code obfuscation, encryption, and packing techniques are applied to make malicious code analysis difficult. Therefore, in this paper, a method to detect malicious code through dynamic analysis and static analysis using Trojan-type Downloader/Dropper malicious code was showed, and suggested to malicious code detection and countermeasures.