• 제목/요약/키워드: DNN Model

검색결과 246건 처리시간 0.023초

Application of artificial intelligence for solving the engineering problems

  • Xiaofei Liu;Xiaoli Wang
    • Structural Engineering and Mechanics
    • /
    • 제85권1호
    • /
    • pp.15-27
    • /
    • 2023
  • Using artificial intelligence and internet of things methods in engineering and industrial problems has become a widespread method in recent years. The low computational costs and high accuracy without the need to engage human resources in comparison to engineering demands are the main advantages of artificial intelligence. In the present paper, a deep neural network (DNN) with a specific method of optimization is utilize to predict fundamental natural frequency of a cylindrical structure. To provide data for training the DNN, a detailed numerical analysis is presented with the aid of functionally modified couple stress theory (FMCS) and first-order shear deformation theory (FSDT). The governing equations obtained using Hamilton's principle, are further solved engaging generalized differential quadrature method. The results of the numerical solution are utilized to train and test the DNN model. The results are validated at the first step and a comprehensive parametric results are presented thereafter. The results show the high accuracy of the DNN results and effects of different geometrical, modeling and material parameters in the natural frequencies of the structure.

DNN과 Decoder 모델 구축을 통한 생체모방 3차원 파형 익형의 유체역학적 특성 예측 (Establishment of DNN and Decoder models to predict fluid dynamic characteristics of biomimetic three-dimensional wavy wings)

  • 김민기;윤현식;서장훈;김민일
    • 한국가시화정보학회지
    • /
    • 제22권1호
    • /
    • pp.49-60
    • /
    • 2024
  • The purpose of this study establishes the deep neural network (DNN) and Decoder models to predict the flow and thermal fields of three-dimensional wavy wings as a passive flow control. The wide ranges of the wavy geometric parameters of wave amplitude and wave number are considered for the various the angles of attack and the aspect ratios of a wing. The huge dataset for training and test of the deep learning models are generated using computational fluid dynamics (CFD). The DNN and Decoder models exhibit quantitatively accurate predictions for aerodynamic coefficients and Nusselt numbers, also qualitative pressure, limiting streamlines, and Nusselt number distributions on the surface. Particularly, Decoder model regenerates the important flow features of tiny vortices in the valleys, which makes a delay of the stall. Also, the spiral vortical formation is realized by the Decoder model, which enhances the lift.

Developing a Quality Prediction Model for Wireless Video Streaming Using Machine Learning Techniques

  • Alkhowaiter, Emtnan;Alsukayti, Ibrahim;Alreshoodi, Mohammed
    • International Journal of Computer Science & Network Security
    • /
    • 제21권3호
    • /
    • pp.229-234
    • /
    • 2021
  • The explosive growth of video-based services is considered as the dominant contributor to Internet traffic. Hence it is very important for video service providers to meet the quality expectations of end-users. In the past, the Quality of Service (QoS) was the key performance of networks but it considers only the network performances (e.g., bandwidth, delay, packet loss rate) which fail to give an indication of the satisfaction of users. Therefore, Quality of Experience (QoE) may allow content servers to be smarter and more efficient. This work is motivated by the inherent relationship between the QoE and the QoS. We present a no-reference (NR) prediction model based on Deep Neural Network (DNN) to predict video QoE. The DNN-based model shows a high correlation between the objective QoE measurement and QoE prediction. The performance of the proposed model was also evaluated and compared with other types of neural network architectures, and three known machine learning methodologies, the performance comparison shows that the proposed model appears as a promising way to solve the problems.

컴퓨팅 부하 예측 DNN 모델 기반 디지털 트윈 소프트웨어 개발 프레임워크 (A Digital Twin Software Development Framework based on Computing Load Estimation DNN Model)

  • 김동연;윤성진;김원태
    • 방송공학회논문지
    • /
    • 제26권4호
    • /
    • pp.368-376
    • /
    • 2021
  • 인공지능 클라우드는 학습된 모델 공유 및 실행 환경을 제공하여 인공지능 기술과 제어 기술을 융합하는 자율 사물 개발을 지원한다. 기존 자율 사물 개발 기술은 인공지능 모델의 정확도만을 고려하여 은닉 계층 수 및 커널 수 증가 등 모델의 복잡성을 증가시켜 결과적으로 많은 연산량을 요구하게 한다. 자원 제약적 컴퓨팅 환경은 해당 모델이 필요로 하는 충분한 자원을 제공할 수 없어 자율 사물의 실시간성 장애를 발생시킬 수 있다. 본 논문은 컴퓨팅 환경에 최적화된 인공지능 모델을 선택하는 디지털 트윈 소프트웨어 개발 프레임워크를 제안한다. 제안 프레임워크는 DNN 기반 부하 예측 모델을 활용하여 제어 소프트웨어를 개발한다. 부하 예측 모델은 디지털 트윈을 활용하여 인공지능 모델의 부하를 예측하여 특정 컴퓨팅 환경에 최적의 모델 선택을 지원한다. 대표적인 CNN 모델을 활용한 부하 예측 실험으로 제안 부하 예측 DNN 모델이 수식 기반 부하 예측 대비 최대 20%의 오류를 보임을 확인했다.

딥러닝을 이용한 음악흥행 예측모델 개발 연구 (A Study on Development of a Prediction Model for Korean Music Box Office Based on Deep Learning)

  • 이도연;장병희
    • 한국콘텐츠학회논문지
    • /
    • 제20권8호
    • /
    • pp.10-18
    • /
    • 2020
  • 본 연구에서는 콘텐츠 산업 중 음악 분야 2차 산업데이터를 활용하여 딥러닝 기법을 이용한 흥행 예측모델 구축 가능성을 살펴보았다. 본 연구를 통해 구축한 딥러닝 예측 모델은 17개 독립변인 -가수 파워, 가수 영향력, 피처링 가수 파워, 피처링 가수 영향력, 참여 가수 수, 참여 가수의 성별, 작사가 역량, 작곡가 역량, 편곡가 역량, 제작사 역량, 유통사 역량, 앨범의 타이틀 여부, 음원 스트리밍 플랫폼 좋아요 수, 음원 스트리밍 플랫폼 코멘트 수, 사전 홍보 기사 수, 티저 영상 조회 수, 초기 흥행성과를 기반으로 음원 흥행성과 -음원이 차트내 상주하는 기간을 예측하는 구조다. 추가적으로 본 연구가 딥러닝 기법을 콘텐츠 분야에 접목시킨 초기단계 연구임을 고려하여, 콘텐츠 흥행예측 선행연구에서 요인 추출을 위해 활용하는 선형회귀분석을 통해 변인 소거 후 구축한 DNN 예측모델과 예측률 비교를 진행하였다.

실제 컨버터 출력 데이터를 이용한 특정 지역 태양광 장단기 발전 예측 (Prediction of Short and Long-term PV Power Generation in Specific Regions using Actual Converter Output Data)

  • 하은규;김태오;김창복
    • 한국항행학회논문지
    • /
    • 제23권6호
    • /
    • pp.561-569
    • /
    • 2019
  • 태양광 발전은 일사량만 있으면 전기에너지를 얻을 수 있기 때문에, 새로운 에너지 공급원으로 용도가 급증하고 있다. 본 논문은 실제 태양광 발전 시스템의 컨버터 출력을 이용하여 장단기 출력 예측을 하였다. 예측 알고리즘은 다중선형회귀와 머신러닝의 지도학습 중 분류모델인 서포트 벡터 머신 그리고 DNN과 LSTM 등 딥러닝을 이용하였다. 또한 기상요소의 입출력 구조에 따라 3개의 모델을 이용하였다. 장기 예측은 월별, 계절별, 연도별 예측을 하였으며, 단기 예측은 7일간의 예측을 하였다. 결과로서 RMSE 측도에 의한 예측 오차로 비교해 본 결과 다중선형회귀와 SVM 보다는 딥러닝 네트워크가 예측 정확도 측면에서 더 우수하였다. 또한, DNN 보다 시계열 예측에 우수한 모델인 LSTM이 예측 정확도 측면에서 우수하였다. 입출력 구조에 따른 실험 결과는 모델 1보다 모델 2가 오차가 적었으며, 모델 2보다는 모델 3이 오차가 적었다.

DNN을 이용한 응시 깊이 보정 (Correcting the gaze depth by using DNN)

  • 한석호;장훈석
    • 한국정보전자통신기술학회논문지
    • /
    • 제16권3호
    • /
    • pp.123-129
    • /
    • 2023
  • 응시점을 통해 어떤 것을 보고 있는지 알 수 있다면 많은 정보를 얻을 수 있다. 응시 추적 기술의 발달로 응시점에 대한 정보는 다양한 응시 추적 기기에서 제공해주는 소프트웨어를 통해 얻을 수 있다. 하지만 실제 응시 깊이와 같은 정확한 정보를 추정하기란 어렵다. 응시 추적 기기를 통해 만약 실제 응시 깊이로 보정할 수 있다면 시뮬레이션, 디지털 트윈, VR 등 다양한 분야에서 현실적이고 정확한 신뢰성 있는 결과를 도출하는 것이 가능해질 것이다. 따라서 본 논문에서는 응시 추적 기기와 소프트웨어를 통해 원시 응시 깊이를 획득하고 보정하는 실험을 진행한다. 실험은 Deep Neural Network(DNN) 모델을 설계한 후 소프트웨어에서 제공하는 응시 깊이 값을 300mm에서 10,000mm까지 지정한 거리별로 획득한다. 획득한 데이터는 설계한 DNN 모델을 통해 학습을 진행하여 실제 응시 깊이와 대응하도록 보정하였다. 보정한 모델을 통해 실험을 진행한 결과, 300mm에서 10,000mm까지 지정한 거리별 297mm, 904mm, 1,485mm, 2,005mm, 3,011mm, 4,021mm, 4,972mm, 6,027mm, 7,026mm, 8,043mm, 9,021mm, 10,076mm로 실제와 비슷한 응시 깊이 값을 획득할 수 있었다.

특수일 분리와 예측요소 확장을 이용한 전력수요 예측 딥 러닝 모델 (Deep Learning Model for Electric Power Demand Prediction Using Special Day Separation and Prediction Elements Extention)

  • 박준호;신동하;김창복
    • 한국항행학회논문지
    • /
    • 제21권4호
    • /
    • pp.365-370
    • /
    • 2017
  • 본 연구는 전력수요 패턴이 다른 평일과 특수일 데이터가 가지는 상관관계를 분석하여, 별도의 데이터 셋을 구축하고, 각 데이터 셋에 적합한 딥 러닝 네트워크를 이용하여, 전력수요예측 오차를 감소하는 방안을 제시하였다. 또한, 기본적인 전력수요 예측요소인 기상요소에 환경요소, 구분요소 등 다양한 예측요소를 추가하여 예측율을 향상하는 방안을 제시하였다. 전체데이터는 시계열 데이터 학습에 적합한 LSTM을 이용하여 전력수요예측을 하였으며, 특수일 데이터는 DNN을 이용하여 전력수요예측을 하였다. 실험결과 기상요소 이외의 예측요소 추가를 통해 예측율이 향상되었다. 전체 데이터 셋의 평균 RMSE는 LSTM이 0.2597이며, DNN이 0.5474로 LSTM이 우수한 예측율을 보였다. 특수일 데이터 셋의 평균 RMSE는 0.2201로 DNN이 LSTM보다 우수한 예측율을 보였다. 또한, 전체 데이터 셋의 LSTM의 MAPE는 2.74 %이며, 특수 일의 MAPE는 3.07 %를 나타냈다.

Performance analysis of local exit for distributed deep neural networks over cloud and edge computing

  • Lee, Changsik;Hong, Seungwoo;Hong, Sungback;Kim, Taeyeon
    • ETRI Journal
    • /
    • 제42권5호
    • /
    • pp.658-668
    • /
    • 2020
  • In edge computing, most procedures, including data collection, data processing, and service provision, are handled at edge nodes and not in the central cloud. This decreases the processing burden on the central cloud, enabling fast responses to end-device service requests in addition to reducing bandwidth consumption. However, edge nodes have restricted computing, storage, and energy resources to support computation-intensive tasks such as processing deep neural network (DNN) inference. In this study, we analyze the effect of models with single and multiple local exits on DNN inference in an edge-computing environment. Our test results show that a single-exit model performs better with respect to the number of local exited samples, inference accuracy, and inference latency than a multi-exit model at all exit points. These results signify that higher accuracy can be achieved with less computation when a single-exit model is adopted. In edge computing infrastructure, it is therefore more efficient to adopt a DNN model with only one or a few exit points to provide a fast and reliable inference service.

Nuclear reactor vessel water level prediction during severe accidents using deep neural networks

  • Koo, Young Do;An, Ye Ji;Kim, Chang-Hwoi;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.723-730
    • /
    • 2019
  • Acquiring instrumentation signals generated from nuclear power plants (NPPs) is essential to maintain nuclear reactor integrity or to mitigate an abnormal state under normal operating conditions or severe accident circumstances. However, various safety-critical instrumentation signals from NPPs cannot be accurately measured on account of instrument degradation or failure under severe accident circumstances. Reactor vessel (RV) water level, which is an accident monitoring variable directly related to reactor cooling and prevention of core exposure, was predicted by applying a few signals to deep neural networks (DNNs) during severe accidents in NPPs. Signal data were obtained by simulating the postulated loss-of-coolant accidents at hot- and cold-legs, and steam generator tube rupture using modular accident analysis program code as actual NPP accidents rarely happen. To optimize the DNN model for RV water level prediction, a genetic algorithm was used to select the numbers of hidden layers and nodes. The proposed DNN model had a small root mean square error for RV water level prediction, and performed better than the cascaded fuzzy neural network model of the previous study. Consequently, the DNN model is considered to perform well enough to provide supporting information on the RV water level to operators.