• 제목/요약/키워드: DNN 모델

Search Result 192, Processing Time 0.026 seconds

Design of Cough Detection System Based on Mutimodal Learning & Wearable Sensor to Predict the Spread of Influenza (독감 확산 예측을 위한 멀티모달 학습과 웨어러블 센서 기반의 기침 감지 시스템 설계)

  • Kang, Jae-Sik;Back, Moon-Ki;Choi, Hyung-Tak;Lee, Kyu-Chul
    • Annual Conference of KIPS
    • /
    • 2018.05a
    • /
    • pp.428-430
    • /
    • 2018
  • 본 논문에서는 독감확산 예측을 위한 웨어러블 센서를 이용한 기침 감지 모델을 제안한다. 서로 상이한 기침 신체데이터를 사용하고 기침 감지 알고리즘의 구현없이 기계가 학습하는 방식인 멀티모달 DNN을 이용하여 설계하였다. 또한 웨어러블 센서를 통해 실생활의 기침 오디오 데이터와 기침 3축 가속도 데이터를 수집하였고, 두 개의 데이터중 하나의 데이터만으로도 감지를 위한 학습이 가능토록하기 위해 각각 MFCC와 FFT를 이용하여 특징 벡터를 추출하는 방법을 이용하였다.

Web Service Platform for Optimal Quantization of CNN Models (CNN 모델의 최적 양자화를 위한 웹 서비스 플랫폼)

  • Roh, Jaewon;Lim, Chaemin;Cho, Sang-Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.151-156
    • /
    • 2021
  • Low-end IoT devices do not have enough computation and memory resources for DNN learning and inference. Integer quantization of real-type neural network models can reduce model size, hardware computational burden, and power consumption. This paper describes the design and implementation of a web-based quantization platform for CNN deep learning accelerator chips. In the web service platform, we implemented visualization of the model through a convenient UI, analysis of each step of inference, and detailed editing of the model. Additionally, a data augmentation function and a management function of files that store models and inference intermediate results are provided. The implemented functions were verified using three YOLO models.

Deep Learning based Drive Reducer Fault Classification System using Vibration (진동을 이용한 딥러닝 기반 구동장치 감속기 결함 분류 시스템)

  • Lee, Se-Hoon;Choi, Jae-Ho;Lee, Jong-Hyeon;Lee, Chang-Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.9-10
    • /
    • 2019
  • 본 논문은 구동장치의 진동에서 특징 데이터를 추출하고 인공신경망에 학습을 시킨 후, 구동 장치의 결함을 분류하는 시스템을 구현하였다. 딥러닝 기술을 이용함으로써 특정 장치에 종속되지 않고 학습할 데이터의 특징에 따라 쉽게 변경 가능하다. 또한, 실제 적용될 현장에서 발생할 수 있는 예측외의 진동 환경에 유연하게 대처하기 위해 딥러닝 모델 중 CNN을 적용한 시스템을 설계하였으며, 본 연구팀의 이전 연구에서 제안된 DNN 기반의 진단시스템을 학습데이터의 환경과 다른 처리배제가 필요한 진동 환경에서 비교 실험하여 제안된 시스템이 새로운 환경적응 성능향상에 대하여 우수한 결과를 얻었음을 확인하였다.

  • PDF

Optimization of Action Recognition based on Slowfast Deep Learning Model using RGB Video Data (RGB 비디오 데이터를 이용한 Slowfast 모델 기반 이상 행동 인식 최적화)

  • Jeong, Jae-Hyeok;Kim, Min-Suk
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1049-1058
    • /
    • 2022
  • HAR(Human Action Recognition) such as anomaly and object detection has become a trend in research field(s) that focus on utilizing Artificial Intelligence (AI) methods to analyze patterns of human action in crime-ridden area(s), media services, and industrial facilities. Especially, in real-time system(s) using video streaming data, HAR has become a more important AI-based research field in application development and many different research fields using HAR have currently been developed and improved. In this paper, we propose and analyze a deep-learning-based HAR that provides more efficient scheme(s) using an intelligent AI models, such system can be applied to media services using RGB video streaming data usage without feature extraction pre-processing. For the method, we adopt Slowfast based on the Deep Neural Network(DNN) model under an open dataset(HMDB-51 or UCF101) for improvement in prediction accuracy.

Neural Feature Compression with Block-based Feature Resizing (블록 기반 특징맵 크기 조정을 이용한 DNN 특징맵 압축)

  • Yoon, Curie;Jeong, Hye Won;Kim, Yeongwoong;Kim, Younhee;Jeong, Se-Yoon;Kim, Hui Yong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.1203-1206
    • /
    • 2022
  • 자율주행, IoT 등 많은 양의 영상 정보를 실시간으로 처리해야 하는 기술과 mobile device 등의 기기에서 Machine Learning 연산을 하는 소프트웨어들이 등장함에 따라 사람을 위한 영상을 출력하는 영상 부호화 기술 대신 기계의 vision task 성능을 위해 특화된 영상 부호화 기술의 필요성이 대두됐다. 본 연구에서는 영상에서 추출한 특징맵을 Neural-Net based Video Coding 모델을 이용해 압축률과 기계의 vision task 성능을 동시에 최적화한다. 또한, 하드웨어 친화적인 block-based 처리와 이로 인한 성능 저하를 최소화하기 위해 적응적 resizing 방식을 제안한다.

  • PDF

A Study on Pre-processing for the Classification of Rare Classes (희소 클래스 분류 문제 해결을 위한 전처리 연구)

  • Ryu, Kyungjoon;Shin, Dongkyoo;Shin, Dongil
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.472-475
    • /
    • 2020
  • 실생활의 사례를 바탕으로 생성된 여러 분야의 데이터셋을 기계학습 (Machine Learning) 문제에 적용하고 있다. 정보보안 분야에서도 사이버 공간에서의 공격 트래픽 데이터를 기계학습으로 분석하는 많은 연구들이 진행 되어 왔다. 본 논문에서는 공격 데이터를 유형별로 정확히 분류할 때, 실생활 데이터에서 흔하게 발생하는 데이터 불균형 문제로 인한 분류 성능 저하에 대한 해결방안을 연구했다. 희소 클래스 관점에서 데이터를 재구성하고 기계학습에 악영향을 끼치는 특징들을 제거하고 DNN(Deep Neural Network) 모델을 사용해 분류 성능을 평가했다.

Analyzing DNN Model Performance Depending on Backbone Network (백본 네트워크에 따른 사람 속성 검출 모델의 성능 변화 분석)

  • Chun-Su Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.128-132
    • /
    • 2023
  • Recently, with the development of deep learning technology, research on pedestrian attribute recognition technology using deep neural networks has been actively conducted. Existing pedestrian attribute recognition techniques can be obtained in such a way as global-based, regional-area-based, visual attention-based, sequential prediction-based, and newly designed loss function-based, depending on how pedestrian attributes are detected. It is known that the performance of these pedestrian attribute recognition technologies varies greatly depending on the type of backbone network that constitutes the deep neural networks model. Therefore, in this paper, several backbone networks are applied to the baseline pedestrian attribute recognition model and the performance changes of the model are analyzed. In this paper, the analysis is conducted using Resnet34, Resnet50, Resnet101, Swin-tiny, and Swinv2-tiny, which are representative backbone networks used in the fields of image classification, object detection, etc. Furthermore, this paper analyzes the change in time complexity when inferencing each backbone network using a CPU and a GPU.

  • PDF

Determination of voice phishing based on deep learning and sentiment analysis (딥러닝과 감성 분석에 따른 보이스피싱 여부 판별)

  • Kim, Won-Woong;Kang, Yea-Jun;Kim, Hyun-Ji;Yang, Yu-Jin;Oh, Yu-Jin;Lee, Min-Woo;Lim, Se-Jin;Seo, Hwa-Jeong
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.811-814
    • /
    • 2021
  • 본 논문에서는 점차 진화되어가는 보이스피싱 수법에 대하여 딥러닝 기반 네트워크인 DNN(Deep Neural Network)를 통한 보이스피싱 여부 판별할 뿐만 아니라, CNN, Bi-LSTM을 활용한 다양한 관점에서의 감성 분석을 통하여 보이스피싱 조직원의 감성 상태를 파악하여 판별된 결과에 신뢰도를 높여주는 모델을 제안하였다.

Speech enhancement based on reinforcement learning (강화학습 기반의 음성향상기법)

  • Park, Tae-Jun;Chang, Joon-Hyuk
    • Annual Conference of KIPS
    • /
    • 2018.05a
    • /
    • pp.335-337
    • /
    • 2018
  • 음성향상기법은 음성에 포함된 잡음이나 잔향을 제거하는 기술로써 마이크로폰으로 입력된 음성신호는 잡음이나 잔향에 의해 왜곡되어지므로 음성인식, 음성통신 등의 음성신호처리 기술의 핵심 기술이다. 이전에는 음성신호와 잡음신호 사이의 통계적 정보를 이용하는 통계모델 기반의 음성향상기법이 주로 사용되었으나 통계 모델 기반의 음성향상기술은 정상 잡음 환경과는 달리 비정상 잡음 환경에서 성능이 크게 저하되는 문제점을 가지고 있었다. 최근 머신러닝 기법인 심화신경망 (DNN, deep neural network)이 도입되어 음성 향상 기법에서 우수한 성능을 내고 있다. 심화신경망을 이용한 음성 향상 기법은 다수의 은닉 층과 은닉 노드들을 통하여 잡음이 존재하는 음성 신호와 잡음이 존재하지 않는 깨끗한 음성 신호 사이의 비선형적인 관계를 잘 모델링하였다. 이러한 심화신경망 기반의 음성향상기법을 향상 시킬 수 있는 방법 중 하나인 강화학습을 적용하여 기존 심화신경망 대비 성능을 향상시켰다. 강화학습이란 대표적으로 구글의 알파고에 적용된 기술로써 특정 state에서 최고의 reward를 받기 위해 어떠한 policy를 통한 action을 취해서 다음 state로 나아갈지를 매우 많은 경우에 대해 학습을 통해 최적의 action을 선택할 수 있도록 학습하는 방법을 말한다. 본 논문에서는 composite measure를 기반으로 reward를 설계하여 기존 PESQ (Perceptual Evaluation of Speech Quality) 기반의 reward를 설계한 기술 대비 음성인식 성능을 높였다.

Development of Vehicle Queue Length Estimation Model Using Deep Learning (딥러닝을 활용한 차량대기길이 추정모형 개발)

  • Lee, Yong-Ju;Hwang, Jae-Seong;Kim, Soo-Hee;Lee, Choul-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.2
    • /
    • pp.39-57
    • /
    • 2018
  • The purpose of this study was to construct an artificial intelligence model that learns and estimates the relationship between vehicle queue length and link travel time in urban areas. The vehicle queue length estimation model is modeled by three models. First of all, classify whether vehicle queue is a link overflow and estimate the vehicle queue length in the link overflow and non-overflow situations. Deep learning model is implemented as Tensorflow. All models are based DNN structure, and network structure which shows minimum error after learning and testing is selected by diversifying hidden layer and node number. The accuracy of the vehicle queue link overflow classification model was 98%, and the error of the vehicle queue estimation model in case of non-overflow and overflow situation was less than 15% and less than 5%, respectively. The average error per link was about 12%. Compared with the detecting data-based method, the error was reduced by about 39%.