• Title/Summary/Keyword: DNA-protein binding

검색결과 724건 처리시간 0.022초

Trigger Factor Interacts with DnaA Protein to Stimulate its Interaction with DnaA Box

  • Lee, Yong-Sun;Lee, June;Kim, Hak-Kyun;Kang, Sukhyun;Han, Joo-Seok;Kim, Jae-Bum;Hwang, Deog-Su
    • Animal cells and systems
    • /
    • 제7권1호
    • /
    • pp.81-87
    • /
    • 2003
  • While screening proteins that interact with DnaA protein, the initiator protein for Escherichia coil chromosomal DNA replication, we found a 52-kD sized protein which bound to DnaA protein in a salt-dependent manner. This protein was identified as trigger factor, a ribosome-associated peptidyl-prolyl- cisltrans isomerase with chaperone activity. Trigger factor was overproduced and purified to near homogeneity, and its effect on the function of DnaA protein was examined, Enhanced binding of DnaA protein to DnaA box with no apparent supershift in the gel-shift experiments suggested that trigger factor, by virtue of its chaperone activity, exerts a change on DnaA protein thus increasing its binding affinity for DnaA box.

N4SSB 단백질의 C-말단기의 7개의 아미노산이 N4SSB 단백질의 in vivo 활성에 미치는 영향 (Role of C-terminal 7 Amino Acids of N4SSB Protein in Its in vivo Activity)

  • 최미영
    • 미생물학회지
    • /
    • 제34권4호
    • /
    • pp.248-253
    • /
    • 1998
  • Esherichia coli(E. coli) K12 균주를 숙주세포로 삼는 박테리오파아지인 N4는 single-stranded DNA에 결합하는 단백질인 N4SSB(bacteriophage N4-coded single-stranded DNA-binding protein) 단백질을 만든다. N4SSB 단백질은 N4 DNA replication 뿐만 아니라 late transcription과 N4 DNA recombination에도 필요한 여러 가지 기능을 가진 단백질이다. N4 late transcription은 숙주세포인 E. coli의 $E{\sigma}^{70}$ RNA polymerase에 의해서 수행이 되나 N4SSB 단백질을 반드시 필요로 하기 때문에 N4SSB 단백질이 생성될 때까지는 N4 late promoter로부터 RNA 합성이 일어나지 않는다. 본 연구에서는 N4SSB의 N4 DNA replication과 late transcription, 그리고 N4 DNA recombination에 필요한 영역(domain)을 알아내기 위해서 여러 가지 돌연변이형 N4SSB 단백질을 만들어 N4 DNA replication과 late transcription, 그리고 N4 DNA recombination의 3가지 작용에 대한 in vivo 활성을 조사 분석하였다. 그 결과 N4SSB 단백질의 C-말단기에 있는 7개의 아미노산이 N4SSB 단백질의 활성에 중요하다는 것을 알 수 있었다. 특히 C-말단기의 7개의 아미노산에는 세 개의 lysine이 포함되어 있는데 이 lysine이 N4SSB 단백질의 활성에 중요한 역할을 한다는 것이 제시되었다.

  • PDF

Novel TGACG-Motif Binding Protein of Soybean

  • Hong, Jong-Chan
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1996년도 제10회 식물생명공학심포지움 고등식물 발생생물학의 최근 진보
    • /
    • pp.40-47
    • /
    • 1996
  • The promoters of a variety of plant genes are characterized by the presence of TGACG motif-containing sequences. These genes often exhibit quite diverse expression characteristics and in many case the TGACG-motif has been demonstrated to be essential for expression. Here we report the isolation and characterization of a soybean cDNA that encodes a novel basic/leucine zipper (bZIP) protein, STF1, that specifically interacts with Hex (TGACGTGG) and CRE (TGACGTCA) sequences. This protein contains a bZIP motif at C-teminus and an acidic domain at N-terminus. DNA binding specificities, heterodimer formation, and expression characteristics of STF1 were compared with a soybean TGA1 protein, STGA1. The soybean STF1 interacts with TGACG-sequences containing an ACGT core, while STGA1 requires TGACG as a sufficient binding sequence. The flanking sequences to the TGACG motif affected DNA binding of STF1 siginificantly. The STF1 mRNA is found mainly in dark grown soybean seedling with higher expression in apical and elongating hypocotyl, while STGA1 mRNA is highly abundant in roots of light grown plants. Furthermore, we demonstrate that STF1 heterodimerzes with G-box binding factorss (GBFs) which was not observed with TGA1. The fact that STF1 possesses both distinct DNA binding speficities and heterodimerization properties suggest that STF1 belongs to a new family of plant bZIP proteins which recognize the Hex/CRE motif.

  • PDF

Nucleotide and Deduced Amino Acid Sequences of Rat Myosin Binding Protein H (MyBP-H)

  • Jung, Jae-Hoon;Oh, Ji-Hyun;Lee, Kyung-Lim
    • Archives of Pharmacal Research
    • /
    • 제21권6호
    • /
    • pp.712-717
    • /
    • 1998
  • The complete nucleotide sequence of the cDNA clone encoding rat skeletal muscle myosin- binding protein H (MyBP-H) was determined and amino acid sequence was deduced from the nucleotide sequence (GenBank accession number AF077338). The full-length cDNA of 1782 base pairs(bp) contains a single open reading frame of 1454 bp encoding a rat MyBP-H protein of the predicted molecular mass 52.7kDa and includes the common consensus 1CA__TG' protein binding motif. The cDNA sequence of rat MyBP-H show 92%, 84% and 41% homology with those of mouse, human and chicken, respectively. The protein contains tandem internal motifs array (-FN III-Ig C2-FN III- Ig C2-) in the C-terminal region which resembles to the immunoglobulin superfamily C2 and fibronectin type III motifs. The amino acid sequence of the C-terminal Ig C2 was highly conserved among MyBPs family and other thick filament binding proteins, suggesting that the C-terminal Ig C2 might play an important role in its function. All proteins belonging to MyBP-H member contains `RKPS` sequence which is assumed to be cAMP- and cGMP-dependent protein kinase A phosphorylation site. Computer analysis of the primary sequence of rat MyBP-H predicted 11 protein kinase C (PKC)phosphorylation site, 7 casein kinase II (CK2) phosphorylation site and 4N-myristoylation site.

  • PDF

대장균 세포 내 다양한 외부 스트레스에 대한 DPS 단백질의 생리적 기능 (Physiological Function of a DNA-Binding Protein from Starved Cells in Combating Diverse External Stresses in Escherichia coli)

  • 이주형;정수진;오훈택;김외연;정영준
    • 생명과학회지
    • /
    • 제23권4호
    • /
    • pp.479-486
    • /
    • 2013
  • 대장균에서 DNA 결합 단백질로 확인된 DNA-binding Protein from Staved cells (DSP)는 DNA를 보호하는 중요한 기능을 한다는 것을 보여주었다. 이 연구의 목표는 야생형 대장균과 dps 유전자 결손 대장균(${\Delta}dps$ E.coli)의 특성 비교를 통해 여러 종류의 스트레스에 대해 대장균에서 DPS의 기능적 역할을 설명하는 것이다. 다양한 스트레스 상태에서 자외선 흡광도계(UV-spectrophotometer)를 이용하여 야생형 대장균과 dps 유전자 결손 대장균의 세포성장을 측정하였으며, 각각의 대장균 세포 성장 속도를 비교함으로써 우리는 대장균에 존재하는 DPS 단백질의 기능적 역할을 확인하였다. 야생형 대장균에 비해 dps 유전자 결손 대장균은 영양분 결핍, 산성화, 열충격, 다양한 활성산소종 스트레스들에 민감한 현상을 나타내었으며, 이것은 DPS가 다양한 극단적인 스트레스에 중요한 기능을 한다는 것을 제안하였다. 결론적으로 대장균의 DPS는 다양한 환경적인 스트레스로부터 DNA와 강하게 결합하여 유지함으로써 세포를 보호하고 세포성장에 결정적인 기능을 한다는 것을 증명하였다.

CND41, a DNA-binding protein in chloroplast nucleoid, and its function

  • Sato, Fumihiko;Murakami, Shinya;Chatani, Hiroshi;Nakano, Takeshi
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1999년도 제13회 식물생명공학심포지움 New Approaches to Understand Gene Function in Plants and Application to Plant Biotechnology
    • /
    • pp.51-56
    • /
    • 1999
  • Plastids, which are organelles unique to plant cells, bear their own genome that is organized into DNA-protein complexes (nucleoids). Regulation of gene expression in the plastid has been extensively investigated because this organelle plays an important role in photosynthesis. Few attempts, however, have been made to characterize the regulation of plastid gene expression at the chromosomal structure, using plastid nucleoids. In this report, we summarize the recent progress in the characterization of DNA-binding proteins in plastids, with special emphasis on CND41, a DNA binding protein, which we recently identified in the choloroplast nucleoids from photomixotrophically cultured tobacco cells. CND41 is a protein of 502 amino acids which consisted of a transit peptide of 120 amino acids and a mature protein of 382 amino acids. The N-terminal of the 'mature' protein has lysine-rich region which is essential for DNA-binding. CNA41 also showed significant identities to some aspartyl proteases. Protease activity of purified CND41 has been recently confirmed and characterized. On the other hand, characterization of accumulation of CND41 both in wild type and transgenic tobacco with reduced amount of CND41 suggests that CND41 is a negative regulator in chloroplast gene expression. Further investigation indicated that gene expression of CND41 is cell-specifically and developmentally regulated as well as sugar-induced expression. The reduction of CND41 expression in transgenic tobacco also brought the stunted plant growth due to the reduced cell length in stem. GA3 treatment on apical meristem reversed the dwarf phenotype in the transformants. Effects of CND41 expression on GA biosynthesis will be discussed.

  • PDF

DNA binding partners of YAP/TAZ

  • Kim, Min-Kyu;Jang, Ju-Won;Bae, Suk-Chul
    • BMB Reports
    • /
    • 제51권3호
    • /
    • pp.126-133
    • /
    • 2018
  • Hippo signaling plays critical roles in regulation of tissue homeostasis, organ size, and tumorigenesis by inhibiting YES-associated protein (YAP) and PDZ-binding protein TAZ through MST1/2 and LATS1/2 pathway. It is also engaged in cross-talk with various other signaling pathways, including WNT, BMPs, Notch, GPCRs, and Hedgehog to further modulate activities of YAP/TAZ. Because YAP and TAZ are transcriptional coactivators that lack DNA-binding activity, both proteins must interact with DNA-binding transcription factors to regulate target gene's expression. To activate target genes involved in cell proliferation, TEAD family members are major DNA-binding partners of YAP/TAZ. Accordingly, YAP/TAZ were originally classified as oncogenes. However, YAP might also play tumor-suppressing role. For example, YAP can bind to DNA-binding tumor suppressors including RUNXs and p73. Thus, YAP might act either as an oncogene or tumor suppressor depending on its binding partners. Here, we summarize roles of YAP depending on its DNA-binding partners and discuss context-dependent functions of YAP/TAZ.

Effects of Dopamine and Haloperidol on Morphine-induced CREB and AP-1 DNA Binding Activities in Differentiated SH-SY5Y Human Neuroblastoma Cells

  • Kim, Soo-Kyung;Kwon, Gee-Youn
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권6호
    • /
    • pp.671-676
    • /
    • 1998
  • In the present study, we first examined whether the changes in the DNA binding activities of the transcription factors, cAMP response element binding protein (CREB) and activator protein-1 (AP-1) mediate the long-term effects of morphine in differentiated SH-SY5Y human neuroblastoma cells. The increases in CREB and AP-1 DNA binding activities were time-dependent up to 6 days of morphine treatment (1, 4, and 6 days). However, the significant reduction in the DNA binding activities of CREB and AP-1 was observed after 10 days of chronic morphine $(10\;{\mu}M)$ administration. Secondly, we examined whether the changes of CREB and AP-1 DNA binding activities could be modulated by dopamine and haloperidol. Dopamine cotreatment moderately increased the levels of the CREB and AP-1 DNA binding activities induced by 10 days of chronic morphine treatment, and haloperidol cotreatment also resulted in a moderate increase of the CREB and AP-1 DNA binding activities. However, dopamine or haloperidol only treatment showed a significant increase or decrease of the CREB and AP-1 DNA binding activities, respectively. In the case of acute morphine treatment, the CREB and AP-1 DNA binding activities were shown to decrease in a time-dependent manner (30, 60, 90, and 120 min). Taken these together, in differentiated SH-SY5Y cells, morphine tolerance seems to involve simultaneous changes of the CREB and AP-1 DNA binding activities. Our data also suggest the possible involvement of haloperidol in prevention or reversal of morphine tolerance at the transcriptional level.

  • PDF

박테리오파아지 T7 의 기능에 관한 연구;복제단백질간의 단백질 상호작용 (Funcyional Studies on Gene 2.5 Protein of Bacteriophage T7 : Protein Interactions of Replicative Proteins)

  • 김학준;김영태
    • 생명과학회지
    • /
    • 제6권3호
    • /
    • pp.185-192
    • /
    • 1996
  • 박테리오파지 T7 gene 2.5 단백질은 single-stranded DNA 결합 단백질로 박태리오파지 T7의 DNA복제, 재조합, 및 수선에 필수적으로 요구된다. Gene 2.5 protein은 T7의 DNA 합성과 성장에 필수적인 단백질이다. Gene 2.5 Protein이 중요시 되는 이유는 이 단백질이 T7의 다른 복제 필수단백질인 T7의 다른 복제 필수단백질인 T7 DNA polymerase 와 gene 4 protein(helicase/primase)와 서로 상호작용할 것으로 제안되었기 때문이다. (Kim and Richardson, J. Biol. Chem., 1992;1994). 이 단백질의 단백질 상호작용을 가능하게 하는 domain은 carboxyl-terminal domain일 것으로 여러 실험에서 대두되었기에, 이 domain의 특성을 파악하기 위해 야생형과 변이체 gene 2.5 단백질들을 각각 GST에 융합한후 fusion 단백질을 정제하였다. 정제된 이 융합 단백질들의 carboxyl-terminal domain이 T7 복제 단백질들과 상호작용을 조사하는지를 조사하기 위해 affinity chromatography로 이용하였다. 실험 결과, 아생형 GST-gene 2.5 융합단잭질(GST-2.5 (WT))는 T7 DNA polymerase 와 상호작용을 하였지만. 변이형 융합단백질(GST-2.5$\Delta$21C)는 interaction을 하지 못했다. 이 결과는 carbohyl-terminal domain이 단백질-단백질 상호작용을 하는데 직접적으로 관여하는 것을 증명하였다. 또한,GST2.5(WT)는 gene 4 protein(helicase/primase)와 직접 상호작용을 하나. GST2.5$\Delta$21C는 상호작용을 하지 못하는 것으로 나타났다. 따라서 gene 4 proteins와의 상호작용에도 gene 2.5 protein의 carboxyl-terminal domain이 직접 관여 한다는 것이 증명되었다. 이상의 결과에서 gene 2.5 protein은 박테리오파지 T7 의 유전자 목제 시 단백질-단백질 상호작용에 관혀아며, 특히 gene 2.5 protein의 carboxyl-terminal domain이 이러한 상호작용에 직접적으로 관여하는 domain이라는 것을 알 수가 있었다.

  • PDF

Functional Analysis of RAD4 Gene Required for Nucleotide Excision Repair of UV-induced DNA Damage in Saccharomyces cerevisiae

  • Park, Sang Dai;Park, In Soon
    • Animal cells and systems
    • /
    • 제6권4호
    • /
    • pp.311-315
    • /
    • 2002
  • The RAD4 gene is essential for nucleotide excision repair in Saccharomyces cerevisiae. It has been known that the deduced amino acid sequence of Rad4 protein contains three DNA-dependent ATPase/helicase motifs. To determine the biochemical activities and functional role of RAD4 the Rad4 protein was expressed and purified. Immunoblot analysis showed a specific band of 21 kDa, which was well-matched with the size of open reading frame of the RAD4 gene. The purified Rad4 protein had no detectable helicase activity. However, the protein could interact with double stranded oligonucleotides, as judged by mobility shift assay. This result suggests that the Rad4 protein is a DNA binding protein.