• Title/Summary/Keyword: DNA-methylation

Search Result 428, Processing Time 0.055 seconds

Increased Methylation of Interleukin 6 Gene Is Associated with Obesity in Korean Women

  • Na, Yeon Kyung;Hong, Hae Sook;Lee, Won Kee;Kim, Young Hun;Kim, Dong Sun
    • Molecules and Cells
    • /
    • v.38 no.5
    • /
    • pp.452-456
    • /
    • 2015
  • Obesity is the fifth leading risk for death globally, and a significant challenge to global health. It is a common, complex, non-malignant disease and develops due to interactions between the genes and the environment. DNA methylation can act as a downstream effector of environmental signals; analysis of this process therefore holds substantial promise for identifying mechanisms through which genetic and environmental factors jointly contribute to disease risk. To assess the effects of excessive weight and obesity on gene-specific methylation levels of promoter regions, we determined the methylation status of four genes involved in inflammation and oxidative stress [interleukin 6 (IL6), tumor necrosis factor ${\alpha}$ ($TNF{\alpha}$), mitochondrial transcription factor A (TFAM), and glucose transport 4 (GLUT4)] in blood cell-derived DNA from healthy women volunteers with a range of body mass indices (BMIs) by methylation-specific PCR. Interestingly, the samples from obese individuals ($BMI{\geq}30kg/m^2$) showed significantly increased hypermethylation for IL6 gene compared to normal weight ($BMI<23kg/m^2$) and overweight sample ($23kg/m^2{\leq}BMI<30kg/m^2$) (P = 0.034 and P = 0.026). However there was no statistically significant difference in promoter methylation of the other 3 genes between each group. These findings suggest that aberrant DNA methylation of IL6 gene promoter may play an important role in the etiology and pathogenesis of obesity and IL6 methylation could be used as molecular biomarker for obesity risk assessment. Further studies are required to elucidate the potential mechanisms underlying this relationship.

DNA Demethylation of the Foxp3 Enhancer Is Maintained through Modulation of Ten-Eleven-Translocation and DNA Methyltransferases

  • Nair, Varun Sasidharan;Song, Mi Hye;Ko, Myunggon;Oh, Kwon Ik
    • Molecules and Cells
    • /
    • v.39 no.12
    • /
    • pp.888-897
    • /
    • 2016
  • Stable expression of Foxp3 is ensured by demethylation of CpG motifs in the Foxp3 intronic element, the conserved non-coding sequence 2 (CNS2), which persists throughout the lifespan of regulatory T cells (Tregs). However, little is known about the mechanisms on how CNS2 demethylation is sustained. In this study, we found that Ten-Eleven-Translocation (Tet) DNA dioxygenase protects the CpG motifs of CNS2 from re-methylation by DNA methyltransferases (Dnmts) and prevents Tregs from losing Foxp3 expression under inflammatory conditions. Upon stimulation of Tregs by interleukin-6 (IL6), Dnmt1 was recruited to CNS2 and induced methylation, which was inhibited by Tet2 recruited by IL2. Tet2 prevented CNS2 re-methylation by not only the occupancy of the CNS2 locus but also by its enzymatic activity. These results show that the CNS2 methylation status is dynamically regulated by a balance between Tets and Dnmts which influences the expression of Foxp3 in Tregs.

SET7-mediated TIP60 methylation is essential for DNA double-strand break repair

  • Song Hyun, Kim;Junyoung, Park;Jin Woo, Park;Ja Young, Hahm;Seobin, Yoon;In Jun, Hwang;Keun Pil, Kim;Sang-Beom, Seo
    • BMB Reports
    • /
    • v.55 no.11
    • /
    • pp.541-546
    • /
    • 2022
  • The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is crucial for maintaining genomic integrity and is involved in numerous fundamental biological processes. Post-translational modifications by proteins play an important role in regulating DNA repair. Here, we report that the methyltransferase SET7 regulates HR-mediated DSB repair by methylating TIP60, a histone acetyltransferase and tumor suppressor involved in gene expression and protein stability. We show that SET7 targets TIP60 for methylation at K137, which facilitates DSB repair by promoting HR and determines cell viability against DNA damage. Interestingly, TIP60 demethylation is catalyzed by LSD1, which affects HR efficiency. Taken together, our findings reveal the importance of TIP60 methylation status by SET7 and LSD1 in the DSB repair pathway.

Heat Stress Causes Aberrant DNA Methylation of H19 and lgf-2r in Mouse Blastocysts

  • Zhu, Jia-Qiao;Liu, Jing-He;Liang, Xing-Wei;Xu, Bao-Zeng;Hou, Yi;Zhao, Xing-Xu;Sun, Qing-Yuan
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.211-215
    • /
    • 2008
  • To gain a better understanding of the methylation imprinting changes associated with heat stress in early development, we used bisulfite sequencing and bisulfite restriction analysis to examine the DNA methylation status of imprinted genes in early embryos (blastocysts). The paternal imprinted genes, H19 and Igf-2r, had lower methylation levels in heat-stressed embryos than in control embryos, whereas the maternal imprinted genes, Peg3 and Peg1, had similar methylation pattern in heat-stressed embryos and in control embryos. Our results indicate that heat stress may induce aberrant methylation imprinting, which results in developmental failure of mouse embryos, and that the effects of heat shock on methylation imprinting may be gene-specific.

Methyl Donor Status Influences DNMT Expression and Global DNA Methylation in Cervical Cancer Cells

  • Poomipark, Natwadee;Flatley, Janet E;Hill, Marilyn H;Mangnall, Barbara;Azar, Elnaz;Grabowski, Peter;Powers, Hilary J
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3213-3222
    • /
    • 2016
  • Background: Methyl donor status influences DNA stability and DNA methylation although little is known about effects on DNA methyltransferases. The aim of this study was to determine whether methyl-donor status influences DNA methyltransferase (Dnmt) gene expression in cervical cancer cells, and if so, whether there are associated effects on global DNA methylation. Materials and Methods: The human cervical cancer cell line, C4-II, was grown in complete medium and medium depleted of folate (F-M+) and folate and methionine (F-M-). Growth rate, intracellular folate, intracellular methionine and homocysteine in the extracellular medium were measured to validate the cancer cell model of methyl donor depletion. Dnmt expression was measured by qRT-PCR using relative quantification and global DNA methylation was measured using a flow cytometric method. Results: Intracellular folate and methionine concentrations were significantly reduced after growth in depleted media. Growth rate was also reduced in response to methyl donor depletion. Extracellular homocysteine was raised compared with controls, indicating disturbance to the methyl cycle. Combined folate and methionine depletion led to a significant down-regulation of Dnmt3a and Dnmt3b; this was associated with an 18% reduction in global DNA methylation compared with controls. Effects of folate and methionine depletion on Dnmt3a and 3b expression were reversed by transferring depleted cells to complete medium. Conclusions: Methyl donor status can evidently influence expression of Dnmts in cervical cancer cells, which is associated with DNA global hypomethylation. Effects on Dnmt expression are reversible, suggesting reversible modulating effects of dietary methyl donor intake on gene expression, which may be relevant for cancer progression.

Variation in Development and DNA Methylation of Spodoptera exigua Fed with Different Diets (먹이에 따른 파밤나방 발육과 DNA 메틸화 변이)

  • Kim, Taehyung;Kumar, Sunil;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.54 no.4
    • /
    • pp.359-367
    • /
    • 2015
  • Physiological plasticity of insects can be closely related with their epigenetic change. This hypothesis was tested using a polyphagous lepidopteran insect, Spodoptera exigua, by assessing the effects of different diets on development and DNA methylation. Three different diets (Welsh onion (WO), Chinese cabbage (CC), artificial diet (AD)) were assessed by feeding a cohort of larvae from neonate to last instar. There were significant differences in larval developmental rate, pupal weight and adult emergence according to diet treatments. AD-fed larvae exhibited the fastest developmental rate along with the highest pupal weight and adult emergence. Among natural hosts, WO was more favorable for development of S. exigua than CC. Total hemolymph proteins and sugars in the last instar larvae were varied among different diets. Gene expression of an insulin-like peptide (SeILP1) presumably associated with development was also varied among diets. Cytosine methylation of genomic DNA was assessed using a monoclonal antibody. Genomic DNA of S. exigua larvae was methylated. DNA methylation was apparently varied among different diet-fed larvae. The facts that a cohort of S. exigua was differentiated in developmental rate and cytosine methylation by different diets suggest that epigenetic factor(s) may play a crucial role in the physiological plasticity.

Epigenetic Mechanisms of Depression: Role of Histone Modification and DNA Methylation in BDNF Gene (우울증의 후성유전기전: BDNF 유전자의 히스톤 변형 및 DNA 메틸화의 역할)

  • Park, Sung Woo
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1536-1544
    • /
    • 2018
  • Depression is a common, serious, and recurring mental disorder. The pathogenesis of depression involves many factors such as environmental factor, genetic factor and alteration of structure and function in neurobiological systems. Increasing evidence supports that epigenetic alteration may be associated with depression. The epigenetics is explained as the mechanisms by which environmental factor causes changes in chromatin structure and alters gene expression without changing DNA base sequence. DNA methylation and histone modification involving histone acetylation and methylation are the main epigenetic mechanisms. Animal studies have shown that stressful environment such as early life stress can leave persistent epigenetic marks in the genome, which alter gene expression and influence neural and behavioral function through adulthood. A potentially important gene in depression is brain-derived neurotrophic factor (BDNF). BDNF plays a central role in depression and antidepressant action. In studies of the rodent, exposure to stress at prenatal, postnatal, and adult stages alters BDNF expression through histone modification and DNA methylation of the BDNF gene which results in anxiety and depressive-like behavior. This review discusses recent advances in the study of the epigenetic mechanisms that contribute to depression, particularly histone modification and DNA methylation of the BDNF gene, that may help in the development of new targets for depression treatment.

Effects of 5-azacytidine, a DNA methylation inhibitor, on embryogenic callus formation and shoot regeneration from rice mature seeds (벼 성숙종자로부터 배상체 캘러스 형성 및 식물체 재분화에 DNA methylation 억제제인 5-azacytidine의 영향)

  • Lee, Yeon-Hee;Lee, Jung-Sook;Kim, Soo-Yun;Sohn, Seong-Han;Kim, Dool-Yi;Yoon, In-Sun;Kweon, Soon-Jong;Suh, Seok-Chul
    • Journal of Plant Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.133-140
    • /
    • 2008
  • The modification of DNA and histone plays an important role for gene expression in plant development. The objective of this research is to observe the effects of methylation on the gene expression during dedifferentiation from rice mature seeds to callus and differentiation from callus to shoots. The embryogenic callus with ability to shoot regeneration was not induced on the N6A medium supplemented with 5-azacytidine and abnormal callus with brown color was formed. When the normal rice callus was placed on the regeneration MSRA medium supplemented with 5-azacytidine, the shoot regeneration was inhibited. The results showed that 5-azacytidine, DNA demethylating agent, had negative effects on normal embryogenic callus formation and shoot regeneration. This suggested that DNA methylation of some genes was required for normal cell dedifferentiation and differentiation in tissue culture. The microarray and $GeneFishig^{TM}$ DEG screening were used to observe the gene transcript profile in callus induction and regeneration on N6A (N6 medium + 5-azaC) and MSRA (MS regeneration medium + 5-azaC). Subsets of genes were up-regulated or down-regulated in response to 5-azaC treatments. The genes related with epigenetic regulation, electron transport, nucleic acid metabolism and response to stress were up and down regulated. The different expression of some genes (germin like protein etc.) during callus induction and shoot regeneration was confirmed using RT-PCR and northern blot analysis.

Chromosome Redundancy and Tree Phenotype Variation in Autotetraploid Trifoliate Orange (동질 사배체 탱자에서 염색체 배가와 수체 표현형의 변이)

  • Oh, Eun Ui;Chae, Chi-Won;Kim, Sat-Byul;Lu, Jian Liang;Yun, Su-Hyun;Koh, Sang-Wook;Song, Kwan Jeong
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.366-374
    • /
    • 2014
  • The study was conducted to investigate the possibility that epigenetic DNA methylation causes tree phenotypic variation in autotetraploids through evaluating the phenotypic variation and DNA methylation in autotetraploids occurred spontaneously from diploid trifoliate orange. Chromosome analysis confirmed that fourteen trifoliate orange trees of selected by flow cytometry were tetraploids (2n = 4X = 36) without any aneuploids. Chromomycin A3 staining determined that these trees were all autotetraploid with doubled chromosome set. Tree phenotypes, such as tree height and width, branching number, length, and angle, internode length, and leaf characteristics, varied in the autotetraploids. Chlorophyll indices were diverse in the autotetraploids, but photosynthetic rates were not significantly different. In addition, a wide range of variation was observed in stomatal density and guard cell length. Analysis of global cytosine DNA methylation showed that there was a variation of the methylation level in autotetraploids. More than half of 14 autotetraploids had at least 2 times higher methylation level than diploid trifoliate orange. The results indicate that tree phenotypic variation in autotetraploids might be related to global DNA methylation for reducing gene redundancy.

Epigenetic Reprogramming and Cloning (후성 유전학적 리프로그래밍과 클로닝)

  • Han Yong-Mahn;Kang Yong-Kook;Koo Deog-Bon;Lee Kyung-Kwang
    • Development and Reproduction
    • /
    • v.7 no.2
    • /
    • pp.61-68
    • /
    • 2003
  • Zygote genome should entail a complex process of epigenetic reprogramming including a global DNA demethylation to reach a totipotency or pluripotency during early mammalian development. In this study, we have analyzed methylation patterns in cloned bovine embryos to monitor the epigenetic reprogramming process of donor genomic DNA. Aberrant DNA methylation patterns were observed in various genomic regions of cloned embryos except single-copy gene sequences. The overall genomic methylation status of cloned embryos was quite different from that of normal embryos produced in viかo or in vivo. Abnormal methylation profiles were also specifically represented in trophectoderm cells of cloned embryos, which probably result in widespread gene dysregulation in extraembryonic region or placental dysfunction familiar to cloned animals. Our findings suggest that developmental failures of cloned embryos are due to incomplete epigenetic reprogramming of donor genomic DNA. Understanding the epigenetic reprogramming processes of donor genome will clearly define the faulty development of cloned embryos.

  • PDF