• Title/Summary/Keyword: DNA-cleavage

Search Result 388, Processing Time 0.024 seconds

Interspecies Nuclear Transfer using Bovine Oocytes Cytoplasm and Somatic Cell Nuclei from Bovine, Porcine, Mouse and Human (소, 돼지, 생쥐, 사람의 체세포와 소 난자를 이용한 이종간 핵 이식)

  • 박세영;김은영;이영재;윤지연;길광수;김선균;이창현;정길생;박세필
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.3
    • /
    • pp.235-243
    • /
    • 2002
  • This study was designed to examine the ability of the bovine (MII) oocytes cytoplasm to support several mitotic cell cycles under the direction of differentiated somatic cell nuclei of bovine, porcine, mouse and human. Bovine GV oocytes were matured in TCM-199 supplemented with 10% FBS. At 20h after IVM, recipient oocytes were stained with 5 $\mu\textrm{g}$/$m\ell$ Hoechst and their 1st polar body (PB) and MII plate were removed by enucleation micropipette under UV filter. Ear skin samples were obtained by biopsy from an adult bovine, porcine, mouse and human and cultured in 10% FBS added DMEM. Individual fibroblast was anlaysed chromosome number to confirm the specificity of species. Nuclear transferred (NT) units were produced by electrofusion of enucleated bovine oocytes with individual fibroblast. The reconstructed embryos were activated in 5 $\mu$M ionomycin for 5 min followed by 1.9 mM 6-dimethylaminopurine (DMAP) in CR1aa for 3 h. And cleaved NT embryos were cultured in CR1aa medium containing 10% FBS on monolayer of bovine cumulus cell for 8 days. Also NT embryo of 4~8 cell stage was analysed chromosome number to confirm the origin of nuclear transferred somatic cell. The rates of fusion between bovine recipient oocytes and bovine, porcine, mouse and human somatic cells were 70.2%, 70.2%, 72.4% and 63.0%, respectively. Also, their cleavage rates were 60.6%, 63.7%, 54.1% and 62.7%, respectively, there were no differences among them. in vitro development rates into morula and blastocyst were 17.5% and 4.3% in NT embryos from bovine and human fibroblasts, respectively. But NT embryos from porcine and mouse fibroblasts were blocked at 16~32-cell stage. The chromosome number in NT embryos from individual fibroblast was the same as chromosome number of individual species. These results show that bovine MII oocytes cytoplasm has the ability to support several mitotic cell cycles directed by newly introduced nuclear DNA.

Menadione Induced Apoptosis in MKN45 Cells via Down-regulation of Survivin (Menadione의 Survivin 하향 조절을 통한 MKN45 세포의 세포사멸 유도 효과)

  • Lee, Min Ho;Kim, Jeongyong;Cho, Yoonjung;Kim, Do Hyun;Yang, Ji Yeong;Kwon, Hye Jin;Park, Min;Woo, Hyun Jun;Kim, Sa-Hyun;Kim, Jong-Bae
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.1
    • /
    • pp.71-77
    • /
    • 2019
  • Menadione is known as an anti-tumor factor. Many studies have reported the potential anti-cancer role of menadione against a range of cancer cell lines. In this study, the anti-cancer effects of menadione and the underlying molecular signaling involved in apoptosis was investigated in gastric cancer cell lines. The menadione treatment decreased the cell viability of MKN45 gastric cancer cells. The decreased cell viability was attributed to the induction of apoptosis, which was confirmed by the results indicating the activation of caspase-3 and -7 and the cleavage of PARP in Western blotting. The upstream regulatory molecules involved in apoptosis were investigated further and it was discovered that menadione reduced the expression of survivin, an inhibitor of upstream apoptosis proteins. In addition, a transcription factor ${\beta}$-catenin, which is known to regulate survivin expression, was down-regulated by menadione. A previous report showed that menadione inhibited XIAP expression to induce apoptosis and induced G2/M cell cycle arrest in AGS cells. This study elucidated another inhibitory mechanism of menadione against gastric cancer cells in a different cell line. Although further studies will be needed, the inhibitory mechanism demonstrated in this study will help better understand the anti-cancer effects of menadione.

Effects of Cumulus Cells and Reactive Oxygen Species (ROS) on Plasminogen Activator Activity during In Vitro Maturation of Porcine Oocytes

  • Sa, Soo-Jin;Park, Chun-Keun;Kim, In-Cheul;Lee, Seung-Hoon;Kwon, Oh-Sub;Kim, Myung-Jick;Cho, Kyu-Ho;Kim, Du-Wan;So, Kyoung-Min;Cheong, Hee-Tae;Webb, Bob
    • Journal of Embryo Transfer
    • /
    • v.25 no.3
    • /
    • pp.171-177
    • /
    • 2010
  • Plasminogen activators (PAs) are serine proteases that convert plasminogen to plasmin. The PA/plasmin system has been associated with a number of physiological processes such as fibrinolysis, ovulation and fertilization. Although correlations have been reported between reactive oxygen species (ROS) and oocyte maturation, the relationship between PA activity and ROS is unknown. The present study was undertaken to determine the effects of cumulus cells on PA activity in matured porcine oocytes under xanthine (X)-xanthine oxidase (XO) system. When oocytes were matured under the X-XO system, the proportion of oocytes remaining GV stage was higher (p<0.05) in oocytes without cumulus cells. The incidence of degenerated oocytes was higher (p<0.05) in the X+XO ($11.1{\pm}6.1$ and $21.6{\pm}3.4%$) than in the control group ($2.9{\pm}1.8$ and $4.0{\pm}1.6%$). The proportion of TUNEL-positive oocytes and activity of caspase-3 were higher (p<0.05) in cumulus-free oocytes and oocytes exposed to ROS. Tissue-type plasminogen activator-plasminogen activator inhibitor (tPA-PAI) and tissue-type plasminogen activator (tPA) activity were detected in oocytes that were separated from cumulus-oocytes complexs (COCs) at 44 h of maturation culture, and only tPA was produced in oocytes that were denuded before the onset of maturation culture. On the other hand, the activities of PA were increased (p<0.05) when oocytes were cultured under the X-XO system. The higher activity of tPA was observed in denuded oocytes (DOs) underwent apoptotic changes by oxidative stress. In COCs, however, tPA-PAI as well as tPA activity was detected and apoptotic changes such as DNA cleavage or caspase-3 activation were not observed. These results suggest that tP A may be relevant to apoptotic cell death in porcine oocytes by oxidative stress.

The Protective Mechanism of Zinc in Fungal Metabolite Gliotoxin-induced Apoptosis (진균독소 Gliotoxin에 의한 세포고사에서 Zinc의 예방적 역할)

  • Park, Ji-Sun;So, Hong-Seob;Kim, Myung-Sunny;Jung, Byung-Hak;Choi, Ik-Jun;Jin, Gyung-Ho;Jin, Sung-Ho;Kim, Nam-Song;Cho, Kwang-Ho;Park, Rae-Kil
    • The Journal of the Korean Society for Microbiology
    • /
    • v.34 no.6
    • /
    • pp.501-512
    • /
    • 1999
  • Gliotoxin, a fungal metabolite, is one of the epipolythiodioxopiperazine classes and has a variety of effects including immunomodulatory and apoptotic agents. This study is designed to evaluate the effect of zinc on gliotoxin-induced death of HL-60 cells. Here, we demonstrated that treatment of gliotoxin decreased cell viability in a dose and time-dependent manner. Gliotoxin-induced cell death was confirmed as apoptosis characterized by chromatin margination, fragmentation and ladder-pattern digestion of genomic DNA. Gliotoxin increased the proteolytic activities of caspase 3, 6, 8, and 9. Caspase-3 activation was further confirmed by the degradation of procaspase-3 and PARP in gliotoxin-treated HL-60 cells. Zinc compounds including $ZnCl_2$ and $ZnSO_4$ markedly inhibited gliotoxin-induced apoptosis in HL-60 cells (from 30% to 90%). Consistent with anti-apoptotic effects, zinc also suppressed the enzymatic activities of caspase-3 and -9 proteases. In addition, cleavage of both PARP and procaspase 3 in gliotoxin-treated HL-60 cells was inhibited by the addition of zinc compounds. We further demonstrated that expression of Fas ligand by gliotoxin was suppressed by zinc compounds. These data suggest that zinc may prevent gliotoxin-induced apoptosis via inhibition of Fas ligand expression as well as suppression of caspase family cysteine proteases-3 and -9 in HL-60 cells.

  • PDF

Effects of the Water Extract from Albizzia julibrissin on Apoptosis and Cell Cycle Progression in the Human Leukemic Jurkat Cells (백혈병 세포주 Jurkat의 세포고사 유도 및 세포주기 억제에 미치는 합산피 추출물의 효과)

  • Park Young Jun;Jung Woo Cheal;Jeong Dae Young;Lee Yong Un;Lee In;Lee Key Sang;Jeon Byung Hun;Sung Kang Keyng;Moon Byung Soon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.6
    • /
    • pp.1383-1392
    • /
    • 2003
  • Apoptosis is a morphologically and biochemically district form of cell death that occurs in many different cell types in a wide variety of organisms. Albizzia julibrissin belonging the family Leguminosae has been used for the treatment of contusion, sore throat, amnesia, and insomnia in oriental traditional medicine. This study investigates whether the water extract of A. julibrissin induce apoptotic cell death in Jurkat T-acute lymphoblastic leukemia (ALL) cells. Jurkat cells were increased inhibitions of cell viability in a concentration-dependent manner by A. julibrissin. This herbal medicine also caused apoptosis as measured by cell morphology and DNA fragmentation. The capability of A. julibrissin to induce apoptosis was associated with proteolytic cleavage of specific target proteins such as poly (ADP-ribose)polymerase (PARP) and beta-catenin proteins suggesting the possible involvement of caspases. Our result showed that Bcl-2 and Bax protein levels were not changed in all A. julibrissin-treated groups compared to control group. These results suggest that A. julibrissin-mediated apoptosis is independent with Bcl-2 related signaling pathway in this cells. The purpose of the present study is also to investigate the Effect of A. julibrissin on cell cycle progression. Our results showed that G1 checkpoint related gene products (cyclin D1, cyclin dependent kinase 4, retinoblastoma, E2F1) were decreased in their protein levels in a dose-dependent manners after treatment of the extract. These results indicate that the increase of apoptotic cell death by A. julibrissin may be due to the inhibition of cell cycle progression in wild type p53-lacking Jurkat cells.

Production of Nitric Oxide by Siegesbeckia Glabrescens is Associated with Apoptosis of Vascular Smooth Muscle Cell (희렴의 Nitric Oxide 유리를 통한 평활근세포에서의 Apoptosis유도)

  • Jun Soo Young;Shin Dong Hoon;Son Chang Woo;Shin Heung Mook
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.4
    • /
    • pp.1055-1060
    • /
    • 2004
  • Apoptosis is the ability of cells to self-destruct by the activation of an intrinsic cellular suicide program when the cells are no longer needed or when they are seriously damaged. Morphologically, apoptosis is characterized by the appearance of membrane blebbing, cell shrinkage, chromatin condensation, DNA cleavage, and the fragmentation of the cell membrane-bound apoptotic bodies. Siegesbeckia glabrescens Makino (Siegesbeckiae Herba, SG) has been widely used as treatments for arthritis, and fever, as well as detoxification properties. The present studies were undertaken to evaluate if SG has an anti-apoptotic property. Cell viability was measured by XTT and tryphan blue stain. Morphological characteristic of human aortic smooth muscle cells(HASMC) were visualized with a phase-contrast microscope. SG significantly reduced HASMC, but not human umbilical vein endothelial cell(HUVEC), viability in a dose-dependent manner. Confluent untreated cells at 24hrs showed normal morphology, flat with a uniform polygonal shape. SG-treated cells (0.5㎎/㎖) at 24hrs showed apoptotic morphology. Cells became irregular with elongated lamellipodia, and exhibited condensed chromatin in nuclei with occasional endoucleation. There was an increase in the number of apoptotic cells rounding-up and being detached from the substrate. TUNEL staining of SG-treated cells showed dark-brown stains in nuclei and cytosol. Caspases are central components of the machinery responsible for apoptosis and are generally divided into two categories; the initiator caspases, which include caspases-2,-8,-9, and -10, and the effector caspases, which include caspases-3,-6, and -7. SG decreased anti-caspase-3 protein expression, which means activation of caspases-3 activity. It has been reported that there is a link between NO formation and apoptosis. NO production was accelerated by SG treatment in HASMC. L-NNA, NOS inhibitor, inhibited SG-induced apoptosis. These results, therefore, indicated that both caspases-3 and NO production are involved in apoptosis in smooth muscle cells. According to these results, SG may have a potential effect in the treatment of hypertensive atherosclerosis.

Novel SIRT Inhibitor, MHY2256, Induces Cell Cycle Arrest, Apoptosis, and Autophagic Cell Death in HCT116 Human Colorectal Cancer Cells

  • Kim, Min Jeong;Kang, Young Jung;Sung, Bokyung;Jang, Jung Yoon;Ahn, Yu Ra;Oh, Hye Jin;Choi, Heejeong;Choi, Inkyu;Im, Eunok;Moon, Hyung Ryong;Chung, Hae Young;Kim, Nam Deuk
    • Biomolecules & Therapeutics
    • /
    • v.28 no.6
    • /
    • pp.561-568
    • /
    • 2020
  • We examined the anticancer effects of a novel sirtuin inhibitor, MHY2256, on HCT116 human colorectal cancer cells to investigate its underlying molecular mechanisms. MHY2256 significantly suppressed the activity of sirtuin 1 and expression levels of sirtuin 1/2 and stimulated acetylation of forkhead box O1, which is a target protein of sirtuin 1. Treatment with MHY2256 inhibited the growth of the HCT116 (TP53 wild-type), HT-29 (TP53 mutant), and DLD-1 (TP53 mutant) human colorectal cancer cell lines. In addition, MHY2256 induced G0/G1 phase arrest of the cell cycle progression, which was accompanied by the reduction of cyclin D1 and cyclin E and the decrease of cyclin-dependent kinase 2, cyclin-dependent kinase 4, cyclin-dependent kinase 6, phosphorylated retinoblastoma protein, and E2F transcription factor 1. Apoptosis induction was shown by DNA fragmentation and increase in late apoptosis, which were detected using flow cytometric analysis. MHY2256 downregulated expression levels of procaspase-8, -9, and -3 and led to subsequent poly(ADP-ribose) polymerase cleavage. MHY2256-induced apoptosis was involved in the activation of caspase-8, -9, and -3 and was prevented by pretreatment with Z-VAD-FMK, a pan-caspase inhibitor. Furthermore, the autophagic effects of MHY2256 were observed as cytoplasmic vacuolation, green fluorescent protein-light-chain 3 punctate dots, accumulation of acidic vesicular organelles, and upregulated expression level of light-chain 3-II. Taken together, these results suggest that MHY2256 could be a potential novel sirtuin inhibitor for the chemoprevention or treatment of colorectal cancer or both.

Characterizations of Restriction Endonuclease EagBI from Enterobacter agglomerans CBNU45 (Enterobacter agglomerans CBNU45로부터 분리된 제한효소 EagBI 의 특성)

  • Choe, Yeong-Ju;Kim, Seong-Jae;Hwang, Hye-Yeon;Im, Jeong-Bin;Kim, Yeong-Chang
    • Korean Journal of Microbiology
    • /
    • v.32 no.1
    • /
    • pp.91-95
    • /
    • 1994
  • EagBI is a type II restriction endonuclease from Enterobacter agglomerans strain CBNU45 isolated from soil. EagBI was partially purified by DEAE-cellulose, phosphocellulose P11 and hydroxylapatite column chromatography. EagBI recognizes and cleaves the sequence 5'-CGAT${\downarrow}$CG-3' and generates 2-base 3'-protruding cohesive ends. The optimal reaction conditions of EagBI are 10 mM Tris-HCl (pH 7.8), 6-10 mM $MgCl_2$, at 37 ${\circ}C$. The enzyme is maximally active in the absence of NaCl, able to cleave both $dam^-$ and $dam^+$ DNAs, and sensitive to heat treatment (at 65 ${\circ}C$ for 10 min). Therefore, although EagBI is an isoschizomer of PvuI, it is more useful than PvuI in respect of the NaCl requirement and heat-stability.

  • PDF

Effect of Dangguibohyultang and its combinations on apoptosis in human colorectal adenocarcinoma HCT116 cells (당귀보혈탕(當歸補血湯)의 배합비율에 따른 대장암 세포주 HCT116의 세포사멸 효과)

  • Kim, Byung-Wan;Yun, Hyun-Joung;Jeon, Hyeon-Suk;Yun, Hyung-Joong;Kim, Chang-Hyun;Park, Sun-Dong
    • The Korea Journal of Herbology
    • /
    • v.21 no.2
    • /
    • pp.37-46
    • /
    • 2006
  • Objectives : The purpose of this study was to investigate the effect of Dangguibohyultang (DB) and its combination (DB-I; Astragali membraneus BUNGE : Angelica gigas NAKAI=5:1, DB-II; Astragali membraneus BUNGE:Angelica gigas NAKAI=1:1, DB-III; Astragali membraneus BUNGE:Angelica gigas NAKAI=1:5,) on apoptosis in human colorectal adenocarcinoma HCT116 cells. Methods : To study the cytotoxic effect of methanol extract of DB-I, DB-II and DB-III on HCT116 cells, the cell viability was determined by XTT reduction method and ttypan blue exclusion assay. To confirm the induction of apoptosis, the cleavage of poly ADP-ribose polymerase (PARP), a substrate for caspase-3 and a typical sign of apoptosis, and the activation of procaspase-3, -8 and -9 were examined by western blot analysis. Furthermore, DB-induced apoptosis was confirmed by DNA fragmentation. The release of cytochrome C from mitochondria to cytosol, the level of Bcl-2 and Bax, and the expressions of Raf/MEK/ERK were examined by western blot analysis. Results : DB-I and DB-II reduced proliferation of HCT116 cells in a dose-dependent manner. DB-I and DB-II decreased procaspase-3, -8, -9 levels in a dose-dependent manner and induced the clevage of PARP. DB-I and DB-II also triggered the mitochondrial apoptotic signaling by increasing the release of cytochrome C from mitochondria to cytosol, decreasing of anti-apoptotic Bcl-2, and increasing of pro-apoptotic Bax. DB-I and DB-II decreased the activation of Ras/Raf/MEK/ERK cascade in a dose-dependent manner. Conclusion : These results suggest that DB-I and DB-II induce apoptosis via mitochondrial pathway in HCT116 cells. Furthermore, Raf/MEK/ERK cascade is involved in DB-induced apoptosis. These results suggest that DB is potentially useful as a chemotherapeutic agent in human liver cancer.

  • PDF

Genetic variation of halophyte New Zealand spinach (Tetragonia tetragonioides) accessions collected in Korea using an AFLP marker (AFLP 마커를 이용한 국내수집 염생식물 번행초 유전다양성 평가)

  • Jeon, Yongsam;Jin, Yong-Tae;Choi, Seo-Hee;Park, Nuri;Kim, In-Kyung;Lee, Ka Youn;Choi, Jong-Jin;Lee, Geung-Joo
    • Journal of Plant Biotechnology
    • /
    • v.43 no.2
    • /
    • pp.157-163
    • /
    • 2016
  • This study was conducted to investigate the potential use of New Zealand spinach (Tetragonia tetragonioides) as a new vegetable crop which will be cultivated in salt-affected soils such as reclaimed areas. New Zealand spinach ecotypes native to Korea were collected across the Southern, Western and Eastern seashore regions of the Korean peninsula, among which fifty-five accessions were later further propagated and evaluated genetically by using an AFLP (amplified fragment length polymorphism) marker. Based on the AFLP analysis performed to uncover the genetic diversity of the collected ecotypes, enzymatic cleavage of the extracted DNA was implemented based on 12 EcoRI and MseI combinations. A total of 1,279 alleles (107 alleles per EcoRI and MseI enzyme combination) were successfully amplified, among which 62 alleles per enzyme combination were polymorphic (58%). The AFLP analysis indicated that the rate of genetic dissimilarity was 29% among the New Zealand spinach collections, which were clustered into the 7 genetic diversity group. This is the first report on the genetic variation in the genus Tetragonia, and the basic information can be applied to select parental lines for enhancing the segregation spectrum of the new halophytic vegetable plant grown in salt-affected areas.