• 제목/요약/키워드: DNA tumor viruses

검색결과 10건 처리시간 0.027초

Topological implications of DNA tumor viral episomes

  • Eui Tae, Kim;Kyoung-Dong, Kim
    • BMB Reports
    • /
    • 제55권12호
    • /
    • pp.587-594
    • /
    • 2022
  • A persistent DNA tumor virus infection transforms normal cells into cancer cells by either integrating its genome into host chromosomes or retaining it as an extrachromosomal entity called episome. Viruses have evolved mechanisms for attaching episomes to infected host cell chromatin to efficiently segregate the viral genome during mitosis. It has been reported that viral episome can affect the gene expression of the host chromosomes through interactions between viral episomes and epigenetic regulatory host factors. This mini review summarizes our current knowledge of the tethering sites of viral episomes, such as EBV, KSHV, and HBV, on host chromosomes analyzed by three-dimensional genomic tools.

A Novel Type of Non-coding RNA, nc886, Implicated in Tumor Sensing and Suppression

  • Lee, Yong Sun
    • Genomics & Informatics
    • /
    • 제13권2호
    • /
    • pp.26-30
    • /
    • 2015
  • nc886 (=vtRNA2-1, pre-miR-886, or CBL3) is a newly identified non-coding RNA (ncRNA) that represses the activity of protein kinase R (PKR). nc886 is transcribed by RNA polymerase III (Pol III) and is intriguingly the first case of a Pol III gene whose expression is silenced by CpG DNA hypermethylation in several types of cancer. PKR is a sensor protein that recognizes evading viruses and induces apoptosis to eliminate infected cells. Like viral infection, nc886 silencing activates PKR and induces apoptosis. Thus, the significance of the nc886:PKR pathway in cancer is to sense and eliminate pre-malignant cells, which is analogous to PKR's role in cellular innate immunity. Beyond this tumor sensing role, nc886 plays a putative tumor suppressor role as supported by experimental evidence. Collectively, nc886 provides a novel example how epigenetic silencing of a ncRNA contributes to tumorigenesis by controlling the activity of its protein ligand.

중합효소연쇄반응을 이용한 닭 종양성 질병의 감별진단에 관한 연구 (Differential diagnosis among Marek's disease, reticuloendotheliosis and avian leukosis by polymeras chain reaction)

  • 성환우;김선중
    • 대한수의학회지
    • /
    • 제38권1호
    • /
    • pp.101-106
    • /
    • 1998
  • The present study attempted to apply polymerase chain reaction (PCR) to develop a rapid differential diagnosis among Marek's disease, reticuloendotheliosis and avian leukosis. The primers chosen to detect Marek's disease virus (MDV) flank the 132bp tandem direct repeat of the MDV genome. The primers selected for reticuloendotheliosis virus (REV) and avian leukosis virus (ALV) are based on proviral long terminal repeats of spleen necrosis virus and Rous-associated virus-2 genomes, respectively. The specific PCR products of MDV, REV and ALV were observed with each primer and the reaction was not cross-reacted among the viruses. MDV-specific DNA was also amplified from the MDV-induced lymphoma (MDCC-MSB1) but not from the REV-induced tumor and ALV-induced lymphoma (LSCC-1104B1). In addition, proviral DNA of REV from REV-induced tumor and proviral DNA of ALV from ALV-induced lymphoma were also amplified by REV-specific and ALV-specific PCRs, respectively. Therefore these three PCR methods may be used to rapidly differentiate among MDV, REV and ALV-associated tumors in diagnosis.

  • PDF

구강 질환 진단용 제제 (Diagnostic Agents for Oral and Maxillofacial Diseases)

  • 고홍섭
    • Journal of Oral Medicine and Pain
    • /
    • 제24권2호
    • /
    • pp.181-187
    • /
    • 1999
  • The most important progress in diagnostic sciences is the increased sensitivity and specificity in diagnostic procedures due to the development of newer micromethodologies and increasing availability of immunological and molecular biological reagents. The outcome of researches in this field has already provided DNA probes and antibodies which can be used for diagnosing various kinds of diseases including inherited ones. This development can be also applied to diagnose diseases in oral and maxillofacial regions. Technological advances have yielded highly sensitive test methodologies so that low analyte concentration and small sample volume are no longer limiting factors. Therefore, saliva can be useful test fluid for an array of analytes. Salivary constituents of diagnostic significance include steroid hormones, antibodies, drugs, and tumor markers. Of the proteins present in saliva, viral-specific immunoglobulins are of the greatest diagnostic interest. The development of conjugates and antigens by recombinant DNA technique and peptide synthesis is necessary for clinical application. Several kits developed for the purpose of blood testing should be modified to permit their application to saliva. The final practical outcome of researches in diagnostic sciences will be various diagnostic agents which can be used for detection of bacteria and viruses, screening and diagnosis of diseases, genetic screening for forensic individual identification. For these purposes, collaboration researches and development between institutions and companies are essential.

  • PDF

The Novel Biological Action of Antimicrobial Peptides via Apoptosis Induction

  • Cho, Jaeyong;Hwang, In-Sok;Choi, Hyemin;Hwang, Ji Hong;Hwang, Jae-Sam;Lee, Dong Gun
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권11호
    • /
    • pp.1457-1466
    • /
    • 2012
  • Antimicrobial peptides (AMPs) exert antimicrobial activity against Gram-positive and Gram-negative bacteria, fungi, and viruses by various mechanisms. AMPs commonly possess particular characteristics by harboring cationic and amphipathic structures and binding to cell membranes, resulting in the leakage of essential cell contents by forming pores or disturbing lipid organization. These membrane disruptive mechanisms of AMPs are possible to explain according to the various structure forming pores in the membrane. Some AMPs inhibit DNA and/or RNA synthesis as well as apoptosis induction by reactive oxygen species (ROS) accumulation and mitochondrial dysfunction. Specifically, mitochondria play a major role in the apoptotic pathway. During apoptosis induced by AMPs, cells undergo cytochrome c release, caspase activation, phosphatidylserine externalization, plasma or mitochondrial membrane depolarization, DNA and nuclei damage, cell shrinkage, apoptotic body formation, and membrane blebbing. Even AMPs, which have been reported to exert membrane-active mechanisms, induce apoptosis in yeast. These phenomena were also discovered in tumor cells treated with AMPs. The apoptosis mechanism of AMPs is available for various therapeutics such as antibiotics for antibiotic-resistant pathogens that resist to the membrane active mechanism, and antitumor agents with selectivity to tumor cells.

Herpes Simplex Virus에 감염된 Mouse의 NK세포역할 (A Role of Natural Killer Cell in Mouse Infected Herpes Simplex Virus)

  • 이연태;이종훈
    • 대한미생물학회지
    • /
    • 제17권1호
    • /
    • pp.7-14
    • /
    • 1982
  • A model of induction of neoplasia by viruses has develpoed from experimental studies in animals and in cultured cells and oncogenic transformation of cells is the result of integration of viral genetic information into the cellular DNA. The evidence for these associations was derived primarily from seroepidemiologic investigation. However, data indicating that the relation between HSV-2 and cervical cancer fits the model derived from experimental animal studies are not yet sufficient to draw conclusion with regard to the etiologic role the virus in the development of the neoplasms. In other hand, the K562 tumor cell is highly susceptible target for natural killer cell lysis by the lymphocytes of human and murine periperal blood. The characteristics of this effector cell type has been investigated. A study on natural killer cell mediated cytotoxicity(NKMC) against $^{51}Cr$-K562 as target cell was studed in HSV-2 infected ICR mouse. We have studied for susceptibility of HSV-2 against mouse embryo fibroblast(MEF) cells and NKMC from HSV-2 infected mouse. The results obtained that the mouse embryo fibroblast cells culture, the number and size of the cells were markedly increased and formed a monolayers relatively rapid, and become complete monolayer sheet around 72 hrs. Duration of cytopathic effect on MEF cells was rapid by serial passing of HSV-2. The morphology of the HSV-2 infected cells appear to be mainly round, ovium, spindle form and some of them was forming large giant cells. The NKMC was decrease in mouse with HSV-2 and comparison between effector/target cells ratio as 25:1 and 50:1 respectively, the NKMC was found to be more significantly decreased than normal control we have concluded that the natural killer cell activity of the viral infected mouse was shown as a suppressed during the HSV-2 infection, day 7th and 14th.

  • PDF

PHOTOCHEMISTRY AND PHOTOBIOLOGY OF PSORALENS

  • Shim, Sang-Chul;Jeon, Young Hee;Kim, DongWon;Han, GyuSeok;Yoo, Dong Jin
    • Journal of Photoscience
    • /
    • 제2권1호
    • /
    • pp.37-45
    • /
    • 1995
  • INTRODUCTION : Psoralens are planar tricyclic furocoumarins present in numerous plants and fungi found throughout the world.' Naturally occurring and synthesized psoralen derivatives(see Figure 1) are photosensitizers of UVA especially from 320 nm to 400 nm, a range at which cellular nucleic acids and proteins are weakly absorbing if any at all. Because of their skinphotosensitizing properties, these compounds have been used in the photochemotherapy of psoriasis and vitiligo. However, undesirable side effects such as carcinoma development in hairless mice as well as possible liver damage from the use of 8-methoxypsoralen(8-MOP) have been reported. The other photobiological effects include inactivation of DNA viruses, killing and mutagenesis of bacteria, inhibition of tumor transmitting capacity of various cells, and hyperpigmentation on human and guinea pig skin. PUVA(psoralen+UVA) photochemotherapy is in fact thousands of years old, having been used in Egypt and India since B.C. 1200-2000. Photochemotherapy for a common disfiguring disease, vitiligo, was practiced in the ancient world by physicians and herbalists who used boiled extracts of the fruits of certain umbelliferous plants, e.g. Ammi majus Linnaeus in Egypt or the leguminous plants, Psoralea corylifolia L. in India. It was first described by Kuske in 19388 that photosensitization of skin by plants was related to the presence of psoralen. He identified natural psoralens in plants as photosensitizers and isolated bergapten(5methoxypsoralen) from the oil of bergamot. The scientific interest in photosensitizing psoralens, however, has grown considerably after the introduction into clinics of the psoralen photochemotherapy for the treatment of psoriasis and of other skin (abbreviation)

  • PDF

Human Immunodeficiency Virus-1 Tat 단백에 의한 인간 CD99유전자의 조절기전에 대한 연구 (Human Immunodeficiency Virus-l Tat Positively Regulates the Human CD99 Gene via DNA Demethylation)

  • 이유진;김예리;이미경;이임순
    • 미생물학회지
    • /
    • 제44권4호
    • /
    • pp.277-281
    • /
    • 2008
  • HIV에 감염된 환자의 경우 다양한 종류의 암이 발생하는 것으로 알려져 있다. 이러한 암종의 높은 발생률의 원인으로, 감염에 의한 면역세포의 감소 및 결핍과 같은 간접적인 이유 뿐 아니라, HIV 바이러스 단백질의 발현이 직접적으로 병의 발생에 관여한다는 보고가 있다. 본 연구에서는 HIV 환자에서 높게 나타나는 암의 발생에 대한 기전을 이해하기 위하여 HIV-1 Tat 유전자와, 다수의 암 발생과 관련이 있는 세포막단백 CD99와의 관계를 규명하였다. 먼저 CD99의 발현에 미치는 Tat의 영향을 알아보기 위하여 HIV-1 Tat 발현 안정화 세포주를 확립하고 Tat 단백에 의한 CD99 유전자의 발현 양상 변화를 분석하였다. 실험결과 Tat의 발현에 의하여 CD99 유전자의 발현이 활성화되는 것이 관찰되었으며 이와 반대로 STAT3의 발현은 낮아졌다. CD99 프로모터는 CpG 함량이 높기 때문에 Tat 단백이 DNA 메칠화를 통해서 CD99 유전자의 발현을 조절하는지 확인하기 위하여 methylation specific PCR을 수행하였고 Tat의 발현이 높은 곳에서 특이적으로 CD99 프로모터 부위가 탈메칠화되는 것을 발견하였다. Tat 발현 세포에서만 특이적인 발현 차이를 보이는 유전자 분석을 위한 Differentially Expressed Gene keratin 17과 collagen, type IV 증가됨이 확인되었다. 위의 결과는 HIV Tat 단백이 직접 세포 단백들을 조절하여 암을 발생시킬 수 있다는 보고를 뒷받침한다.

Expression of Toll-like Receptor 9 Increases with Progression of Cervical Neoplasia in Tunisian Women - A Comparative Analysis of Condyloma, Cervical Intraepithelial Neoplasia and Invasive Carcinoma

  • Fehri, Emna;Ennaifer, Emna;Ardhaoui, Monia;Ouerhani, Kaouther;Laassili, Thalja;Rhouma, Rahima Bel Haj;Guizani, Ikram;Boubaker, Samir
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권15호
    • /
    • pp.6145-6150
    • /
    • 2014
  • Toll-like receptors (TLRs) are expressed in immune and tumor cells and recognize pathogen-associated molecular patterns. Cervical cancer (CC) is directly linked to a persistent infection with high risk human papillomaviruses (HR-HPVs) and could be associated with alteration of TLRs expression. TLR9 plays a key role in the recognition of DNA viruses and better understanding of this signaling pathway in CC could lead to the development of novel immunotherapeutic approaches. The present study was undertaken to determine the level of TLR9 expression in cervical neoplasias from Tunisian women with 53 formalin-fixed and paraffin-embedded specimens, including 22 samples of invasive cervical carcinoma (ICC), 18 of cervical intraepithelial neoplasia (CIN), 7 of condyloma and 6 normal cervical tissues as control cases. Quantification of TLR9 expression was based on scoring four degrees of extent and intensity of immunostaining in squamous epithelial cells. TLR9 expression gradually increased from CIN1 (80% weak intensity) to CIN2 (83.3% moderate), CIN3 (57.1% strong) and ICC (100% very strong). It was absent in normal cervical tissue and weak in 71.4% of condyloma. The mean scores of TLR9 expression were compared using the Kruskall-Wallis test and there was a statistical significance between normal tissue and condyloma as well as between condyloma, CINs and ICC. These results suggest that TLR9 may play a role in progression of cervical neoplasia in Tunisian patients and could represent a useful biomarker for malignant transformation of cervical squamous cells.

인체 폐암종에서 p53의 발현에 관한 연구 (Expression of p53 in Human Primary Lung Cancers)

  • 이영규;박성수;신동호;이동후;이정희;이중달
    • Tuberculosis and Respiratory Diseases
    • /
    • 제40권4호
    • /
    • pp.395-403
    • /
    • 1993
  • 연구배경 : 암억제 유전자 p53은 393개의 codon을 가지고, 17번 염색체에 위치하며, 정상세포에서 세포의 성장과 함께 암세포로의 형질전환을 억제하는 것으로 알려져 있다. 그러나 유전자 재배열 또는 점 돌연변이가 일어나 비활성 유전자로 바뀌면, 암억제 기능을 소실하게 되어 암발생 감수성이 높아진다. 돌연변이형 p53유전자의 발현 빈도 및 조직학적 유형에 따른 돌연변이형 p53의 발현양상에 대한 연구를 하여 그 의의를 규명하고저 이 연구를 실시하였다. 방법 : 한국인 정상 폐조직 10예 및 서로 다른 유형의 폐암종 40예(소세포 암종 12예, 비소세폐암종 28예)에서, 암억제 유전자 p53의 발현을 관찰하기 위하여, 돌연변이형 p53(Ab-3), 단세포군 항체와 야생형과 돌연변이형의 혼합형 p53(DO7) 단세포군 항체들을 이용하여, 면역조직화학적 검색을 시도하였다. 결과 : 암억제 유전자 돌연변이형 p53은 정상조직 6예의 기관지상피와 폐포 상피세포에서는 발현되지 않았다. 암억제 유전자 돌연변이형 p53을 시행하였던 폐암종 32예 중 15예(46.9%)의 암세포에서 핵내에 산발적으로 p53유전자가 발현되었으며, 소세포폐암종은 8예 중 3예(37.5%) 그리고 비소세포암종은 24예 중 12예(50.0%) 에서 각각 돌연변이형 p53의 발현이 핵내에서 관찰 되었다. 야생형과 돌연변이형을 다함께 포착하는 혼합형 p53(clone DO7)은 정상인 4예의 폐조직의 기관지 상피 세포 및 폐포 상피세포 핵내 및 소세포폐암종 4예와 비소세포 폐암종 4예를 포함한 총 8예 전예의 핵내에서 균질하게 발현되었다. 결론 : 이와같은 결과는 p53유전자의 돌연 변이형의 발현을 의미하는 것이며, 소세포함종 및 대세포암종에서 돌연변이형 p53유전자의 발현 뿐만 아니라 다른 돌연변이형의 암억제 유전자들이 작용 할 가능성과 함께 또 다른 우성 암유전자들의 영향이 폐암종의 발생에 밀접한 관계가 있을 것으로 추적된다.

  • PDF