• 제목/요약/키워드: DNA topoisomerase-I inhibition

검색결과 29건 처리시간 0.026초

소목 추출물의 세포독성 효과와 Topoisomerase I 억제 활성에 관한 연구 (In Vitro Studies on the Anticancer Effect and Topoisomerase I Inhibition Activity of Caesalpinia sappan L. Extract)

  • 박갑주;김수영;마진열;성현제;전원경
    • 생약학회지
    • /
    • 제30권1호
    • /
    • pp.1-6
    • /
    • 1999
  • To evaluate cytotoxic effect and topoisomerase I inhibition activity of Caesalpinia sappan L., both water and methanol extracts were examined using in vitro assay. The cytotoxic effect of Caesalpinia sappan L. examined using MTT and SRB assay and $IC_{50}$ values were measured against U937, HL60, HepG2, SNU-1, SNU-16 cancer cell lines. Among them the representative cytotoxic results are shown as follows; water extract (U937=13.39 ${\mu}g/ml$, HL60=8.65 ${\mu}g/ml$, HepG2=38.48 ${\mu}g/ml$, SNU-1=7.72 ${\mu}g/ml$, SNU-16=25.49 ${\mu}g/ml$), methanol extract (U937=13.35 ${\mu}g/ml$, HL60=9.43 ${\mu}g/ml$, HepG2=25.67 ${\mu}g/ml$, SNU-1=8.37 ${\mu}g/ml$, SNU-16=28.64 ${\mu}g/ml$). The inhibitory concentration of DNA topoisomerase I activity against water extract was 100 ${\mu}g/ml$ and the inhibitory concentration of DNA topoisomerase I against methanol extract was 400 ${\mu}g/ml$.

  • PDF

말불버섯 추출물의 Topoisomerase 저해 효과 (Inhibition of Topoisomerase-mediated DNA Cleavage by Lycoperdon perlatum)

  • 박미정;조강진;김정봉;김동헌;김양섭;석순자;김선여;황영수
    • 한국식품과학회지
    • /
    • 제29권5호
    • /
    • pp.1057-1062
    • /
    • 1997
  • 26속 32종의 버섯의 topoisomerase II 작용 억제여부를 검색한 결과 말불버섯이 topoisomerase II 작용을 억제하며 그 유효 성분이 핵산분획물에 존재함을 확인하였다. 말불버섯의 핵산분획물은 linear DNA와 open circular DNA를 생성시켰으며 농도와 반응시간에 의존적인 반응 양상을 나타냈다. 또한 말불버섯의 핵산분획물은 topoisomerase I의 작용도 억제하였다. 그러나 배양한 말불버섯의 균사체는 topoisomerase 작용에 아무런 영향을 미치지 않았다.

  • PDF

Human Topoisomerase I-DNA 절개가능 복합체에 대한 Indenoisoquinoline 유도체들의 결합양상 연구 (Binding Mode Studies of Indenoisoquinoline Analogues into Human Topoisomerase I-DNA Complex Using Flexible Docking)

  • 박인선;김보연;김춘미;최선
    • 약학회지
    • /
    • 제53권4호
    • /
    • pp.228-234
    • /
    • 2009
  • Topoisomerase I (Topo I) participates in the DNA replication, transcription, and repair. Binding of Topo I inhibitor to the Topo I-DNA cleavage complex forms stabilized ternary complex which blocks DNA religation and ultimately causes cell death. Camptothecin (CPT) and its derivatives have been among the most effective anticancer drugs by inhibition of topo I. However, efforts to synthesize non-CPT drugs have been actively going on because the CPT derivatives have several limitations such as poor solubility, short half-life, and side effects. As an indenoisoquinoline, NSC314622 is not as potent as CPT, but its chemical stability and slower reversibility of the cleavage complex made it a good lead compound. Recently, a series of indenoisoquinoline analogues were synthesized with substituted dimethoxy or methylenedioxy on the aromatic ring and alkylamino on the lactam nitrogen. Some of them showed quite good Topo I inhibitory activity. Using the computer docking program, Surflex-Dock, indenoisoquinoline analogues were docked into the human Topo I-DNA cleavable complex. The docking results showed that the compounds with activity better than NSC314622 intercalated between the -1 and +1 base pairs at the cleavage site, but those with little or no activities did not appear to intercalate. These results could be useful to design new Topo I inhibitors improved than CPT.

The activity - binding affinity relationship of topoisomerase I inhibitors by flexible docking with FlexiDock

  • Kim, Ji-Hyun;Park, In-Hee;Kim, Choon-Mi
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.159.1-159.1
    • /
    • 2003
  • Human Topoisomerase I (topo I) helps the control of DNA supercoiling in cells by assisting breaking and religation of DNA strand. It is essential for cellular metabolism and survival, hence, a good target for a novel class of anticancer drugs. As topo I inhibitor binds to the DNA-topo I complex, the religation of DNA strand is suppressed which results in the death of the target cell. Seven compounds of H-Imidazo[4, 5-g]phthalazing-4, 9-dione derivatives with $IC_50$ in the range of 0.001 and 6.27 $\mu$M in 5 different cancer cells and four compounds of 7-chloro-6-quinazoline-5, 8-dione derivatives with positive and negative topo I inhibition activities were studied. (omitted)

  • PDF

Cytotoxicity and DNA Topoisomerases Inhibitory Activity of Constituents from the Sclerotium of Poria cocos

  • Li, Gao;Xu, Ming-Lu;Lee, Chong-Soon;Woo, Mi-Hee;Chang, Hyun-Wook;Son, Jong-Keun
    • Archives of Pharmacal Research
    • /
    • 제27권8호
    • /
    • pp.829-833
    • /
    • 2004
  • The bioactivity-guided fractionation of the methylene chloride extract of the sclerotium of Poria cocos led to the isolation of (S)-(+)-turmerone (1), ergosterol peroxide (2), polyporenic acid C (3), dehydropachymic acid (4), pachymic acid (5), and tumulosic acid (6). Compounds 4-6 exhibited moderate cytotoxicities, with $IC_{50}$ values of 20.5, 29.1, and $10.4{\;}\mu\textrm{m}$, respectively, against a human colon carcinoma cell line. However, 3-6 not only showed inhibitory activities as potent as etoposide used as a positive control on DNA topoisomerase II (36.1, 36.2, 43.9 and 66.7% inhibition at a concentration of $20{\;}\mu\textrm{m}$, respectively), but also inhibition of DNA topoisomerase I (55.8, 60.7, 43.5, and 83.3% inhibition at a concentration of $100{\;}\mu\textrm{m}$, respec-tively).

Synthesis of New 3-Arylisoquinolinamines: Effect on Topoisomerase I Inhibition and Cytotoxicity

  • Cho, Won-Jae;Min, Sun-Young;Le, Thanh-Nguyen;Kim, Tae-Sung
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.180.1-180.1
    • /
    • 2003
  • Eukaryotic DNA topoisomerase I (top I) is an essential enzyme that act to relax supercoiled DNA during the transcription, replication and mitosis. Intracellular levels of top I are elevated in a number of human solid tumors, relative to the respective normal tissues, suggesting that controlling the topI level is important to treat cancer. Top I poisons show their antitumor activities by stabilizing the cleavable ternary complex consisting of top I enzyme, DNA, and drug. Thus, top I is a promising target for the development of new cancer chemotherapeutics against a number of solid tumors. (omitted)

  • PDF

Topoisomerase I and II Inhibitory Activities and Cytotoxic Constituents from the Barks of Tilia amurnesis

  • Piao, Dong Gen;Lee, You-Jeong;Seo, Chang-Seob;Lee, Chong-Soon;Kim, Jae-Ryong;Chang, Hyun-Wook;Son, Jong-Keun
    • Natural Product Sciences
    • /
    • 제17권3호
    • /
    • pp.245-249
    • /
    • 2011
  • Eight compounds, squalene (1), friedelin (2), ${\beta}$-sitosterol (3), ${\beta}$-sitosterol-3-O-glucoside (4), ${\alpha}$-tocopherol (5), betulinic acid (6), trilinolein (7) and 1-O-(9Z,12Z-Octadecadienoyl)-3-nonadecanoyl glycerol (8), were isolated from the barks of Tilia amurensis. Their chemical structures were identified by comparing their physicochemical and spectral data with those published in the literature. These isolated compounds were examined for their inhibitory activities against topoisomerase I and II. Compound 7 showed significant inhibition of DNA topoisomerase I and II activities, with percent decreases in activity of 87 and 95%, respectively at a concentration of $100\;{\mu}M$. Compound 6 exhibited cytotoxicity against the human colon adenocarcinoma cell line (HT-29), the human breast adenocarcinoma cell line (MCF-7) and the human liver hepatoblastoma cell line (HepG-2), with $IC_{50}$ values of 20, 59 and $16\;{\mu}M$, respectively.

6-(1-하이드록시 또는 아실옥시알킬)-5,8-디알콕시-1,4-나프토퀴논 유도체의 합성, DNA Topoisomerase-I에 대한 억제, 세포독성 및 항암활성 (6-(1-Hydroxy or Acyloxyalkyl)-5,8-Dialkoxy-1,4-Naphthoquinones: Synthesis, Evaluation of Cytotoxic Activity; Antitumor Activity and Inhibitory effect on DNA Topoisomerase-I)

  • 김용;최수라;명평근;안병준
    • 약학회지
    • /
    • 제44권2호
    • /
    • pp.141-148
    • /
    • 2000
  • A new synthetic method of 6-(1-oxyalkyl)-5,8-dimethoxy-1,4-naphthoquinones was developed, 2-formyl-1,4,5,8-tetramethoxynaphthalene was oxidized to form 6-formyl-5,8-dimethoxy-1,4-naphthoquinone(DMNQ). This was selectively reduced and benzylated to produce 6-formyl-5,8-dimethoxy-1,4-dibenzyloxynaphthalene, to which various alkylmagnesium halide were added, followed by debenzylation and oxidation in sequence, yielding 6-(1-hydroxyalkyl)-DMNQ derivatives. 6-(1-hydroxyalkyl)-5,8-diethoxy-1,4-naphthalene (DENQ) derivatives were synthesized by similar procedure. 1'-OH of the naphthoquinone derivatives was acylated with various alkanoic acids to give 6-(1-acyloxyalkyl)-DMNQ or DENQ derivatives. TOPO-I inhibitory activity and cytotoxicity of DENQs were less potent than that of DMNQs. Among the DMNQ and DENQ analogues, the ones with alkyl group being heptyl were most potent in TOPO-I inhibition $IC_{50}$/; 30.1, 36.4 $\mu$M). DUNQ derivatives with a longer side chain exhibited a weaker cytotoxicity. A correlation between size of the alkyl side chain and cytotoxicity was not observed for DENQ derivatives. Acylation of 1'-hydroxyl group, in general, decreased both TOPO-I inhibitory activity and cytotoxicity T/C (%) values of the DENQ derivatives on S-180 intraperitoneal tumor were larger than those of DMNQ derivatives. Among the compounds synthesized,6-(1-hydroxyheptyl)-DENQ and 6-(1-hex-anoyloxyoctyl)-DMNQ showed the highest T/C values of 183% and 182%, respectively.

  • PDF

Naphthazarin Derivatives: Synthesis, Inhibition of DNA Topoisomerase-I and Antitumor Activity

  • Ahn, B-Z;Kim, Y;You, Y-J;Chung, S-K;Kim, K-S;Song, G-Y;Sok, D-E
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1997년도 춘계학술대회
    • /
    • pp.109-109
    • /
    • 1997
  • Inhibitory effect on DNA topoisomerase-I, rate of glutathione conjugation and cytotoxicity of naphthoquinone derivatives were correlated. During 5 min exposure of the derivatives to glutathione (GSH), it was found that 14% of 5,8-dimethoxy-1,4-naphthoquinone(DMNQ) was converted into a GSH-conjugate, whereas 5,8-dihydroxy-1,4-naphthoquinone(DHNQ) did not interact with GSH, implying that DMNQ exerted higher electrophilicity than DHNQ. However, DHNQ (IC$\_$50/, 0.15 ${\mu}$M) showed stronger cytotoxicity in L1210 cells than DMNQ(IC$\_$50/, 0.45 ${\mu}$M). The stronger cytotoxicity of DHNQ, compared to DMNQ, could be ascribed to more rapid redox cycling. Both naphthoquinones (IC$\_$50/, 60-65 ${\mu}$M) exhibiting about the same inhibitory effect on DNA topoisomerase-I were more potent than 1,4-naphthoquinone(1,4-NQ, IC$\_$50/, 134 ${\mu}$M). Thus, 5,8-oxy groups in the structure seem to be important for the inhibition of the enzyme. DMNQ showed a broader dose range while maintaining a good antitumor activity against S-180 fluid tumor. For these reasons, DMNQ was taken as useful pharmacophore for structural modification. Introduction of 1-hydroxyalkyl groups at C-2 of DMNQ lowered all of the activities mentioned above, while acetylation of 1-hydroxyalkyl moiety enhanced the activities by 4-5 times. Introduction of the same side chains at C-6 exhibited stronger activities than 2-substituted ones. Based on these results it was suggested that the quinonoid moiety in 6-substituted DMNQ was more exposed to cellular nucleophiles such as DNA, thiols of enzymes and so on. The synthesis of DHNQ or DMNQ derivatives are going on, and the corelationship between structure-activity will be discussed.

  • PDF