• 제목/요약/키워드: DNA technology

검색결과 2,997건 처리시간 0.031초

전기화학적 방법에 의한 신규 바이오칩의 SNP 검출 (SNP Detection of Arraye-type DNA Chip using Electrochemical Method)

  • 최용성;권영수;박대희
    • 한국전기전자재료학회논문지
    • /
    • 제17권4호
    • /
    • pp.410-414
    • /
    • 2004
  • High throughput analysis using a DNA chip microarray is powerful tool in the post genome era. Less labor-intensive and lower cost-performance is required. Thus, this paper aims to develop the multi-channel type label-free DNA chip and detect SNP (Single nucleotide polymorphisms). At first, we fabricated a high integrated type DNA chip array by lithography technology. Various probe DNAs were immobilized on the microelectrode array. We succeeded to discriminate of DNA hybridization between target DNA and mismatched DNA on microarray after immobilization of a various probe DNA and hybridization of label-free target DNA on the electrodes simultaneously. This method is based on redox of an electrochemical ligand.

Sijo Literature Therapeutic Research on the Structuring of Emotion-DNA

  • Park, In-Kwa
    • International Journal of Advanced Culture Technology
    • /
    • 제5권1호
    • /
    • pp.26-31
    • /
    • 2017
  • In this study, Emotion-DNA is constructed in the same way asthat the human DNA constructs the human body. Emotion-DNA is copied and translated in the same way as that the human DNA copies and translates itself. We made an attempt to embody the mind by Emotion-DNA like the symbols "A, T, G, C, U" that make up the chromosome of the human body. This is a diagram of the flow of emotions that the human body operates by literary works. These schemes present new directions for the therapeutic analysis of literary works and for the creation of therapeutic literary works. In this study, we analyzed the nominal Emotion-syllables as a framework of the structuring of emotional DNA. As a result, through the structuring of the emotional DNA, it was judged that the therapeutic action of the human body, which is included in the Rated Sijo among the literary works, can be more concrete and powerful than the works of other genres.

Improvement of the electro-transformed cell yield for Bifidobacterium sp. with large DNA

  • Park, Min Ju;Park, Myeong Soo;Ji, Geun Eog
    • 한국식품과학회지
    • /
    • 제51권2호
    • /
    • pp.188-191
    • /
    • 2019
  • In this study, the poor electro-transformant yield of large DNA in bifidobacteria was improved by increasing the DNA concentration, which was amplified by enhancing electroporation conditions: treating the cell wall weakening agent and cell membrane permeabilizing molecule as well as changing the electrical parameter. In the enhanced conditions, the electroporation frequency increased from 15 to 71 times compared to the initial conditions at the same DNA concentration. As the DNA concentration increased, the difference in the electroporation frequency between the two conditions became greater, and the curve of the enhanced conditions seemed to be saturated with a DNA concentration over $4{\mu}g$. The present study provided a clue to the recovery of the electroporation frequency with large DNA and formulated the relationship between the DNA concentration, the DNA size and the electroporation frequency in bifidobacteria. Therefore, this study will contribute to the expansion of molecular genetic studies of bifidobacteria.

Mitochondrial genome editing: strategies, challenges, and applications

  • Kayeong Lim
    • BMB Reports
    • /
    • 제57권1호
    • /
    • pp.19-29
    • /
    • 2024
  • Mitochondrial DNA (mtDNA), a multicopy genome found in mitochondria, is crucial for oxidative phosphorylation. Mutations in mtDNA can lead to severe mitochondrial dysfunction in tissues and organs with high energy demand. MtDNA mutations are closely associated with mitochondrial and age-related disease. To better understand the functional role of mtDNA and work toward developing therapeutics, it is essential to advance technology that is capable of manipulating the mitochondrial genome. This review discusses ongoing efforts in mitochondrial genome editing with mtDNA nucleases and base editors, including the tools, delivery strategies, and applications. Future advances in mitochondrial genome editing to address challenges regarding their efficiency and specificity can achieve the promise of therapeutic genome editing.

Construction of Two Metal-ion Binding Sites to Improve the 3′-5′Exonuclease Activity of Taq DNA Polymerase

  • Park, Yong-Hyun;Kim, Jong-Moon;Choi, Hye-Ja;Kim, Seog-K.;Kim, Young-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권5호
    • /
    • pp.471-477
    • /
    • 1998
  • Taq DNA polymerase from Thermus aquaticus is very useful in the polymerase chain reaction. Taq DNA polymerase is classified in the pol I family, represented by E. coli DNA polymerase I. The three-dimensional structural alignment of 3'-5'exonuclease domains from the pol I family DNA polymerases explains why Taq DNA polymerase does not carry out proofreading in polymerase chain reactions. Three sequence motifs, Exo I, II, and III, must exist to carry out 3'-5'exonuclease activity for proof- reading by a 3'-5'exonuclease reaction, but these are abolished in Taq DNA polymerase. The key catalytic module in 3'-5'exonuclease is two metal ions chelated by four active-site carboxylic amino acids. Taq DNA polymerase was mutagenized to construct the catalytic module in the active site. The circular dichroism technique supported the formation of the catalytic module, and the radioactive assay showed that the 3'-5'exonuclease activity doubled in the mutant Taq DNA polymerase.

  • PDF

DNA chip technology

  • 이상엽;윤성호;최종길;임근배
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.119-122
    • /
    • 2000
  • Biological science is being revolutionized by the availability of much sequence information from many genome project With the advanced technology at hand, main trend in biological research is rapidly changing from a structural DNA analysis to understanding cellular function of the DNA sequences. Combined with mechanics, computer, bioinformatics and other advanced technologies, DNA chip technology provides numerous applications because of its robustness, accuracy, and automation. DNA chip is expected to become an indispensable tool in fields of biology, biotechnology, drug discovery, and other application areas. DNA chip can be used for mutation and polymorphism detection, gene expression monitoring and phenotypic analysis as well. If DNA chip is used for the development of pharmaceutical products, it can considerably reduce the cost and time for the entire process of drug discovery and development, and can also contribute in developing personal drugs.

  • PDF

Enhancing Transfection Efficiency Using Polyethylene Glycol Grafted Polyethylenimine and Fusogenic Peptide

  • Lee, Haeshin;Jeong, Ji-Hoon;Lee, Je-Hoon;Park, Tae-Gwan
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제6권4호
    • /
    • pp.269-273
    • /
    • 2001
  • This study presents a new formulation method for improving DNA transfection effi-ciency using a fusogenic peptide and polyethylene glycol-grafted polyethylenimine. Succinimidyls succinate polyethylene glycol (PEG-SSA) was conjugated with polyethylenimine(PEL). PEL is well known for a good endosomal escaping and DNA condensign agent. The positively charged syn-thetic fusogenic peptide, KALA was coated on the negatively charged PEG-g-PEI/DNA and PEI/DNA complexes. The KALA/PEI/ DNA complexes exhibited aggregation behavior at higher KALA coating amount with an effective diameter of around 1,000 nm. However, the LALA/PEG-g-PEI/DNA complexes were 100-300 nm in size with a surface zeta-potential (ζ)value of about +20mV. The conjugated PEG molecules suppressed any KALA-mediated inter-particle aggregation, and thereby improved the transfection efficiency, Consequently, the transfection efficiency of the KALA/PEG-g-PEI/DNA complexes was obtained by utilizing both the fusogenic activity of KALA and the steric repulsion effect of PEC.

  • PDF

Ubiquitin E3 ligases in cancer: somatic mutation and amplification

  • Eun-Hye Jo;Mi-Yeon Kim;Hyung-Ju Lee;Hee-Sae Park
    • BMB Reports
    • /
    • 제56권5호
    • /
    • pp.265-274
    • /
    • 2023
  • Defects in DNA double-strand break (DSB) repair signaling permit cancer cells to accumulate genomic alterations that confer their aggressive phenotype. Nevertheless, tumors depend on residual DNA repair abilities to survive the DNA damage induced by genotoxic stress. This is why only isolated DNA repair signaling is inactivated in cancer cells. DNA DSB repair signaling contributes to general mechanism for various types of lesions in diverse cell cycle phases. DNA DSB repair genes are frequently mutated and amplified in cancer; however, limited data exist regarding the overall genomic prospect and functional result of these modifications. We list the DNA repair genes and related E3 ligases. Mutation and expression frequencies of these genes were analyzed in COSMIC and TCGA. The 11 genes with a high frequency of mutation differed between cancers, and mutations in many DNA DSB repair E3 ligase genes were related to a higher total mutation burden. DNA DSB repair E3 ligase genes are involved in tumor suppressive or oncogenic functions, such as RNF168 and FBXW7, by assisting the functionality of these genomic alterations. DNA damage response-related E3 ligases, such as RNF168, FBXW7, and HERC2, were generated with more than 10% mutation in several cancer cells. This study provides a broad list of candidate genes as potential biomarkers for genomic instability and novel therapeutic targets in cancer. As a DSB related proteins considerably appear the possibilities for targeting DNA repair defective tumors or hyperactive DNA repair tumors. Based on recent research, we describe the relationship between unstable DSB repairs and DSB-related E3 ligases.

Preparation of Oligonucleotide Arrays with High-Density DNA Deposition and High Hybridization Efficiency

  • Park, Jeong-Won;Jung, Yong-Won;Jung, Young-Hwan;Seo, Jeong-Sun;Lee, Young-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권11호
    • /
    • pp.1667-1670
    • /
    • 2004
  • In DNA microarray produced by DNA-deposition technology, DNA-immobilization and -hybridization yields on a solid support are most important factors for its accuracy and sensitivity. We have developed a dendrimeric support using silylated aldehyde slides and polyamidoamine (PAMAM) dendrimers. An oligonucleotide array was prepared through a crosslinking between the dendrimeric support and an oligonucleotide. Both DNAimmobilization and -hybridization yields on the solid support increased by the modification with the dendrimers. The increase of the immobilization and hybridization efficiency seems to result from a threedimensional arrangement of the attached oligonucleotide. Therefore, our dendrimeric support may provide a simple and efficient solution to the preparation of DNA microarrays with high-density DNA-deposition and high hybridization efficiency.

Indicator-free DNA Chip Array Using an Electrochemical System

  • Park, Yong-Sung;Kwon, Young-Soo;Park, Dae-Hee
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제4C권4호
    • /
    • pp.133-136
    • /
    • 2004
  • This research aims to develop a DNA chip array without an indicator. We fabricated a microelectrode array through photolithography technology. Several DNA probes were immobilized on an electrode. Then, target DNA was hybridized and measured electrochemically. Cyclic-voltammograms (CVs) showed a difference between the DNA probe and mismatched DNA in an anodic peak. This indicator-free DNA chip resulted in a sequence-specific detection of the target DNA.