• Title/Summary/Keyword: DNA technology

Search Result 3,008, Processing Time 0.041 seconds

Characterization of partially functionalized diamond for detecting single mismatched DNA (부분적 기능화된 다이아몬드를 이용한 single mismatched DNA 검출 특성)

  • Yang, Jung-Hoon;Song, Kwang-Soup
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.29-33
    • /
    • 2013
  • Here we report a partially aminated micropattern via direct functionalization and examine eleven different solution-phase probe DNAs hybridizing with the same target DNA on both hydrogen and oxygen terminated diamond. The hybridization intensities determined by epifluorescence microscopy were compared and are influenced strongly by the negatively charged surface and mismatched position of its sequence with immobilized probe DNA.

Covalent Binding of DNA onto Glass Support for the Construction of Genosensor

  • Jeong, U-Seong;Baek, Se-Hwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.709-710
    • /
    • 2000
  • Genosensor technology utilizes a patterned array of DNA molecules immobilized on solid supports for biomedical analysis. The detection capability of the sensor depended mainly on the way the capture probes are attached to the support as well as the sequence. We compared two different. coupling methods currently used to covalently graft DNA molecules onto a glass surface.

  • PDF

Influence of Mercury on the Repair of Ionizing Radiation-induced DNA Damage in Coelomocytes of Eisenia fetida (이온화 방사선에 의해 손상된 Eisenia fetida 체강세포의 DNA 수복에 수은이 미치는 영향)

  • Ryu, Tae-Ho;Nili, Mohammad;An, Kwang-Guk;Kim, Jin-Kyu
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.3
    • /
    • pp.236-240
    • /
    • 2011
  • Mercury known as quicksilver, is the most common cause of heavy metal toxicity. Toxicity caused by excessive mercury exposure is now being recognized as a widespread environmental problem and is continuing to attract a great deal of public concerns. The mercury genotoxicity could be its effect on DNA repair mechanisms, which constitute the defense system designated to protect genome integrity. The objective of this study is to confirm that mercuric chloride inhibits the repair of gamma ray-induced DNA damage. The earthworm of Eisenia fetida was chosen for this study because it is an internationally accepted model species for toxicity testing with a cosmopolitan distribution. Experiments were done to identify the levels of DNA damage and the repair kinetics in the coelomocytes of E. fetida irradiated with 20 Gy gamma rays alone or with gamma rays after 40 mg $kg^{-1}$ $HgCl_2$ treatment by means of the single cell gel electrophoresis assay. The Olive tail moments were measured during 0~96 hours after irradiation. The repair time in the animals treated with the combination of $HgCl_2$ and ionizing radiation was nearly five times longer than that in the animals treated with ionizing radiation alone. Also, E. fetida exposed to mercury showed a statistically lower repair efficiency of gamma ray-induced DNA damage. The results suggest that the mercury could even have deleterious effects on the DNA repair system. Influence of mercury on the DNA repair mechanisms has been confirmed by this study.

Optimized Condition of Genomic DNA Extraction and PCR Methods for GMO Detection in Potato (유전자재조합 감자의 검정을 위한 DNA분리 및 PCR검출의 최적조건 탐색)

  • Shin, Weon-Sun;Kim, Myung-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.591-597
    • /
    • 2003
  • To compare the quality of genomic DNA extracted from potato for PCR detection, four different methods, such as silica-based membrane method, silica-coated bead method, STE solution treatment, and CTAB-phenol/chloroform method, were evaluated. Also, to remove an excessive carbohydrate from the potato, ${\alpha}$- and ${\beta}$-amylase were used individually and in combination. When used both silica-based membrane method and silica-coated bead method combined with enzymes, the genomic DNAs were extracted from the raw potato with high purity for PCR. However, the silica-coated head method combined with enzyme treatment was the most efficient for extraction of the genomic DNA from the frozen fried potatoes. When applied with STE solution, the highly purified DNA was extracted from the raw potatoes without enzyme treatment in adequate yield for PCR. In cases of processed potatoes, such as frozen-fried potato and fabricated potato chips, CTAB-phenol/chloroform method is mostly feasible for DNA extraction and PCR efficacy at high sensitivity. As the results of PCR amplification, 216bp of PCR product was detected on 2% agarose gel electrophoresis, but any amplicons derived from New leaf and New leaf Y gene was not detected in any sample.

Functional Identification of an 8-Oxoguanine Specific Endonuclease from Thermotoga maritima

  • Im, Eun-Kyoung;Hong, Chang-Hyung;Back, Jung-Ho;Han, Ye-Sun;Chung, Ji-Hyung
    • BMB Reports
    • /
    • v.38 no.6
    • /
    • pp.676-682
    • /
    • 2005
  • To date, no 8-oxoguanine-specific endonuclease-coding gene has been identified in Thermotoga maritima of the order Thermotogales, although its entire genome has been deciphered. However, the hypothetical protein Tm1821 from T. maritima, has a helix-hairpin-helix motif that is considered to be important for DNA binding and catalytic activity. Here, Tm1821 was overexpressed in Escherichia coli and purified using Ni-NTA affinity chromatography, protease digestion, and gel filtration. Tm1821 protein was found to efficiently cleave an oligonucleotide duplex containing 8-oxoguanine, but Tm1821 had little effect on other substrates containing modified bases. Moreover, Tm1821 strongly preferred DNA duplexes containing an 8-oxoguanine:C pair among oligonucleotide duplexes containing 8-oxoguanine paired with four different bases (A, C, G, or T). Furthermore, Tm1821 showed AP lyase activity and Schiff base formation with 8-oxoguanine in the presence of $NaBH_4$, which suggests that it is a bifunctional DNA glycosylase. Tm1821 protein shares unique conserved amino acids and substrate specificity with an 8-oxoguanine DNA glycosylase from the hyperthermophilic archaeon. Thus, the DNA recognition and catalytic mechanisms of Tm1821 protein are likely to be similar to archaeal repair protein, although T. maritima is an eubacterium.

DNA Barcoding of Isaacsicalanus paucisetus (Copepoda: Calanoida: Spinocalanidae) from the Hydrothermal Vent in the North Fiji Basin, Southwestern Pacific Ocean

  • Park, Chailinn;Lee, Won-Kyung;Kim, Se-Joo;Ju, Se-Jong
    • Animal Systematics, Evolution and Diversity
    • /
    • v.36 no.2
    • /
    • pp.182-184
    • /
    • 2020
  • Isaacsicalanus paucisetus Fleminger, 1983, a monotypic species of the family Spinocalanidae Vervoort, 1951, was first reported from a hydrothermal vent field in the East Pacific Rise off the mouth of the Gulf of California. The mitochondrial cytochrome oxidase I(mtCOI) DNA barcodes are considered a useful tool to assist traditional taxonomy and species discrimination in calanoid copepods. However, the mtCOI DNA barcodes of I. paucisetus have not been reported due to the species rarity and the difficulty of sampling. In this study, we firstly determined the mtCOI DNA barcodes of the I. paucisetus newly collected from a hydrothermal vent in the North Fiji Basin of the southwestern Pacific. All mtCOI DNA barcodes of I. paucisetus were identical and intraspecies variations of spinocalanid species were 0.0-3.0%. Interspecies and intergeneric variations were 13.4-25.2% and 16.7-24.1%, respectively. The DNA barcodes of I. paucisetus obtained in the present study would be helpful for understanding taxonomic relationships of widespread spinocalanid species.

Purification and Characteristic Properties of DNA Polymerase $\alpha$ from Sea-Urchin, Hemicentrotus pulcherrismus (말똥 성게의 DNA Polymerase $\alpha$의 정제와 특성)

  • HA Mi-Suck;RYU Beung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.2
    • /
    • pp.136-145
    • /
    • 1987
  • From the sea-urchin, Hemicentrotus pulcherrismus, we have purified by four column chromatographic steps for DNA polymerase $\alpha$ activity. The molecular weight of DNA polymerase u was determined to be around 137,000-138,000 by Sephadex G-200 gel filtration and SDS-polyacrylamide gel electrophoresis. The purified enzyme had the optimal activity at pH 7.4. This enzyme showed to be a function of the metal ion $K^+,\;Na^+$\;and\;Mg^{2+}$ employed as activators, the optimum $K^+$\;or\;Na^+ concentration were 20 mM or 25mM and the optimum $Mg^{2+}$ concentration was 10 mM. The enzyme activity was inhibited by N-ethyl-maleimide, aphidicolin, cytosine $\beta-D-arabinofuranoside$ 5'-triphoshate (ara CTP) and phosphonoacetic acid.

  • PDF

SoEM: a novel PCR-free biodiversity assessment method based on small-organelles enriched metagenomics

  • Jo, Jihoon;Lee, Hyun-Gwan;Kim, Kwang Young;Park, Chungoo
    • ALGAE
    • /
    • v.34 no.1
    • /
    • pp.57-70
    • /
    • 2019
  • DNA metabarcoding is currently used for large-scale taxonomic identification to understand the community composition in various marine ecosystems. However, before being widely used in this emerging field, this experimental and analytic approach still has several technical challenges to overcome, such as polymerase chain reaction (PCR) bias, and lack of well-established metabarcoding markers, a task which is difficult but not impossible to achieve. In this study, we present an adapted PCR-free small-organelles enriched metagenomics (SoEM) method for marine biodiversity assessment. To avoid PCR bias and random artefacts, we extracted target DNA sequences without PCR amplification from marine environmental samples enriched with small organelles including mitochondria and plastids because their genome sequences provide a valuable source of molecular markers for phylogenetic analysis. To experimentally enrich small organelles, we performed subcellular fractionation using modified differential centrifugation for marine environmental DNA samples. To validate our SoEM method, two marine environmental samples from the coastal waters were tested the taxonomic capturing capacity against that of traditional DNA metabarcoding method. Results showed that, regardless of taxonomic levels, at least 3-fold greater numbers of taxa were identified in our SoEM method, compared to those identified by the conventional multi-locus DNA metabarcoding method. The SoEM method is thus effective and accurate for identifying taxonomic diversity and presents a useful alternative approach for evaluating biodiversity in the marine environment.

High Throughput Magnetic Separation for Human DNA by Aminosilanized Iron Oxide Nanoparticles (아미노실란화 철산화물 나노입자를 이용한 Human DNA의 초고속 자성분리)

  • Kang, Ki-Ho;Chang, Jeong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.10
    • /
    • pp.605-609
    • /
    • 2008
  • This work describes the preparation of functionalized magnetic nanoparticles(MNPs) and their bioapplication to human DNA separation. Silica coated MNPs were prepared by changing the volume ratio of tetraethyl orthosilicate(TEOS) for controlled coating thickness on the original nanoparticle of MNPs. The sol-gel process in silica coating on MNPs surface was adapted for relatively mild reaction condition, low-cost, and surfactant-free. And then amino functionalized magnetic nanoparticles were synthesized using amine groups as surface modifiers. The result of adsorption efficiency for human DNA with amino-functionalized silica coated MNPs was calculated as a function of the number of amine groups.

A Simple and Reliable Method for Preparation of Cross-Contamination-Free Plant Genomic DNA for PCR-Based Detection of Transgenes

  • Hwang, Seon-Kap;Kim, Young-Mi
    • BMB Reports
    • /
    • v.33 no.6
    • /
    • pp.537-540
    • /
    • 2000
  • A simplified but reliable method was developed for the polymerase chain reaction (PCR)-based detection of genetically modified (GM) plants. The modified CTAB (mCTAB) method enabled us to prepare a high quality of genomic DNA from several hundred plant leaf samples in one day. Using DNA samples prepared from seven dicots and two monocots, approximately 1.75-kb regions spanning 17 S to 25 S ribosomal RNA genes were successfully amplified in a 2X PCR pre-mix containing BLOTTO. Further fidelity assessment of the mCTAB method by PCR analysis with Roundup Ready soybean (RRS) and non-RRS plants showed that the DNA samples prepared alternately from each of two lines were evidently free of cross-contamination. These results demonstrate that the mCTAB method is highly recommended for the rapid detection of transgenes in large numbers of leaf samples from diverse transgenic plants.

  • PDF