• Title/Summary/Keyword: DNA taxonomy

Search Result 288, Processing Time 0.026 seconds

Isolation and Characterization of a Feather Degrading Alkalophilic Streptomyces sp. TBG-S13A5 and its Keratinolytic Properties

  • Indhuja, Selvaraj;Shiburaj, Sugathan;Pradeep, Nediyaparambu Sukumaran;Thankamani, Vaidyanathan;Abraham, Teruvath Koshy
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.4
    • /
    • pp.303-309
    • /
    • 2012
  • Keratinases are of particular interest because of their action on insoluble keratins and generally on a broad range of protein substrates. Alkalophilic and neutrophilic actinomycete strains isolated from different soil samples, rich in keratinaceous substances were screened for keratinolytic activity. An alkalophilic isolate, TBG-S13A5, was found to possess good keratinolytic activity and was able to utilize feather as the sole carbon and nitrogen source. TBG-S13A5 exhibited an off-white aerial mass color with a rectus-flexibilis type of spore chain. The morphological, microscopical and biochemical characters were comparable with that of Streptomyces albidoflavus. Fatty acid methyl ester profiling (FAME) and 16S rDNA sequence analysis confirmed its identity as a strain of S. albidoflavus. Under submerged fermentation conditions, maximum protease production was recorded on the $5^{th}$ day of incubation at $30^{\circ}C$, using basal broth of pH 9.0 with 0.25% (w/v) white chicken feather. This strain could affect feather degradation when the initial pH was 8 and above and maximum protease production was recorded when the initial pH was around 10.5. The effectiveness of the crude enzyme in destaining and leather dehairing were also demonstrated.

A molecular investigation of Saccharina sessilis from the Aleutian Islands reveals a species complex, necessitating the new combination Saccharina subsessilis

  • Starko, Samuel;Boo, Ga Hun;Martone, Patrick T.;Lindstrom, Sandra C.
    • ALGAE
    • /
    • v.33 no.2
    • /
    • pp.157-166
    • /
    • 2018
  • Cryptic species complexes are increasingly recognized in phycological research, obscuring taxonomy and raising questions about factors influencing speciation. A recent exploration of kelp genetic diversity on Haida Gwaii, British Columbia revealed the existence of a new species, Saccharina druehlii, which is cryptic with Saccharina sessilis. This suggests that molecular investigations further north may be required to elucidate the taxonomy and evolutionary history of this lineage. Although, for several decades, S. sessilis was considered a single highly variable species, its taxonomy has been far from straightforward. In particular, Hedophyllum subsessile (Areschoug) Setchell is now recognized as a synonym of S. sessilis in North America, but as a growth form of Saccharina bongardiana in Far East Russia. To resolve this taxonomic confusion, we sequenced mitochondrial (CO1-5P) and nuclear (internal transcribed spacer) markers of S. sessilis populations from the Aleutian Islands, Alaska, USA. Interestingly, none of our sequences matched S. sessilis sensu stricto. Instead, CO1-5P sequences from populations in the central and eastern Aleutians matched exactly S. druehlii with increasing sequence divergence occurring westward. Samples from Attu, the western-most island, composed a genetic group that clearly represents Kjellman's concept of Hafgygia bongardiana f. subsessilis and is distinct enough from S. druehlii and S. sessilis to potentially constitute a distinct species. Therefore, Saccharina subsessilis comb. nov. is proposed for this entity. Our results suggest the existence of a species complex at the crown node of S. sessilis and thus further investigation of Saccharina in Alaskan waters should be conducted to reconstruct the evolutionary history of this fascinating lineage.

Caulobacter ginsengisoli sp. nov., a Novel Stalked Bacterium Isolated from Ginseng Cultivating Soil

  • Liu, Qing-Mei;Ten, Leonid N.;Im, Wan-Taek;Lee, Sung-Taik;Yoon, Min-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.15-20
    • /
    • 2010
  • A Gram negative, aerobic, nonspore-forming, straight or curved rod-shaped bacterium, designated Gsoil $317^T$, was isolated from soil of a ginseng field in Pocheon Province (South Korea) and was characterized using a polyphasic approach. Cells were dimorphic, with stalk (or prostheca) and nonmotile or nonstalked and motile, by means of a single polar flagellum. Comparative analysis of 16S rRNA gene sequences revealed that strain Gsoil $317^T$ was most closely related to Caulobacter mirabilis LMG $24261^T$ (97.2%), Caulobacter fusiformis ATCC $15257^T$ (97.1 %), Caulobacter segnis LMG $17158^T$ (97.0%), Caulobacter vibrioides DSM $9893^T$ (96.8%), and Caulobacter henricii ATCC $15253^T$ (96.7%). The sequence similarities to any other recognized species within Alphaproteobacteria were less than 96.0%. The detection of Q-10 as the major respiratory quinone and a fatty acid profile with summed feature 7 ($C_{18:1}\;{\omega}7c$ and/or $C_{18:1}\;{\omega}9t$ and/or $C_{18:1}\;{\omega}12t;$ 56.6%) and $C_{16:0}$ (15.9%) as the major fatty acids supported the affiliation of strain Gsoil $317^T$ to the genus Caulobacter. The G+C content of the genomic DNA was 65.5 mol%. DNA-DNA hybridization experiments showed that the DNA-DNA relatedness values between strain Gsoil $317^T$ and its closest phylogenetic neighbors were below 11%. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain Gsoil $317^T$ should be classified as representing a novel species in the genus Caulobacter, for which the name Caulobacter ginsengisoli sp. novo is proposed. The type strain is Gsoil $317^T$ (=KCTC $12788^T=DSM\;18695^T$).

Acinetobacter marinus sp. novo and Acinetobacter seohaensis sp. nov., Isolated from Sea Water of the Yellow Sea in Korea

  • Yoon, Jung-Hoon;Kim, In-Gi;Oh, Tae-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1743-1750
    • /
    • 2007
  • Two Gram-negative, nonmotile, coccobacilli, SW-$3^T$ and SW-$100^T$, were isolated from sea water of the Yellow Sea in Korea. Strains SW-$3^T$ and SW-$100^T$ contained ubiquinone-9 (Q-9) as the predominant respiratory lipoquinone and $C_{18:1}\;{\omega}9c$ and $C_{16:0}$ as the major fatty acids. The DNA G+C contents of strains SW-$3^T$ and SW- $100^T$ were 44.1 mol% and 41.9 mol%, respectively. A neighbor-joining tree based on l6S rRNA gene sequences showed that the two isolates fell within the evolutionary radiation enclosed by the genus Acinetobacter. Strains SW-$3^T$ and SW-$100^T$ exhibited a l6S rRNA gene similarity value of 95.7% and a mean DNA-DNA relatedness level of 9.2%. Strain SW-$3^T$ exhibited l6S rRNA gene sequence similarity levels of 93.5-96.9% to the validly described Acinetobacter species and fifteen Acinetobacter genomic species. Strain SW-$100^T$ exhibited l6S rRNA gene sequence similarity levels of less than 97.0% to the other Acinetobacter species except Acinetobacter towneri DSM $14962^T$ (98.0% similarity). Strains SW-$3^T$ and SW-$100^T$ exhibited mean levels of DNA-DNA relatedness of 7.3-l6.7% to the type strains of some phylogenetically related Acinetobacter species. On the basis of phenotypic, phylogenetic, and genetic data, strains SW-$3^T$ and SW-$100^T$ were classified in the genus Acinetobacter as two distinct novel species, for which the names Acinetobacter marinus sp. novo (type strain SW-$3^T$=KCTC $12259^T$=DSM $16312^T$) and Acinetobacter seohaensis sp. novo (type strain SW-$100^T$=KCTC $12260^T$=DSM $16313^T$) are proposed, respectively.

Molecular evolution of cpDNA trnL-F region in Korean Thalictrum L. (Ranunculaceae) and its phylogenetic relationships: Impacts of indel events (한국산 꿩의다리속(미나리아재비과)의 cpDNA trnL-F 지역의 분자진화와 유연관계: Indel events의 영향)

  • Park, Seongjun;Kim, Hyuk-Jin;Park, SeonJoo
    • Korean Journal of Plant Taxonomy
    • /
    • v.42 no.1
    • /
    • pp.13-23
    • /
    • 2012
  • The trnL-F region islocated in the large single-copy region of the chloroplast genome. It consists of the trnL gene, the trnL intron, and the trnL-F IGS. Molecular evolution and phylogenetic relationships in Korean Thalictrum L. were investigated using data from the cpDNA trnL-F region. Bayesian and parsimony analyses of the data set with the gap characteristics recovered well-resolved trees that are topologically similar, with clades supported by some indels evolution. Indel events of cpDNA trnL-F in Korean Thalictrum were interpreted as phylogenetically informative characteristics. Sect. Physocarpum (excluding T. osmorhizoides) was an early-diverging group with in the genus and the remaining section formed strongly supported clades. Korean Thalictrum has various evolutionary patterns, such as the spatial distribution of the nucleotide diversity and transversion-type base substitutions in the trnL-F region.

A cytogenetic study of Astragalus koraiensis Y. N. Lee (정선황기의 세포유전학적 연구)

  • Han, Sang Eun;Kim, Hyun-Hee;Heo, Kweon
    • Korean Journal of Plant Taxonomy
    • /
    • v.43 no.2
    • /
    • pp.139-145
    • /
    • 2013
  • This study was carried out to determine the karyotype and chromosomal localizations of 45S and 5S rDNAs using FISH in Astragalus koraiensis. The somatic metaphase chromosome number of this species was 2n = 16 with basic chromosome number of x = 8. The karyotype of A. koraiensis was consisted of six pairs of median region chromosomes(chromosome 1, 3, 4, 5, 6, 8) and two pairs of submedian chromosomes(chromosome 2, 7). Based on the FISH, one pair of 45S rDNA site was detected on the centromeric region of chromosome 5. Whereas, two pair of 5S sites were detected on the short arm of chromosome 4 and centromeric region of chromosome 7, respectively. These are quite different patterns from A. membranaceus, A. membranaceus var. alpinus, and A. mongholicus. Although A. koraiensis is considered as Korean endemic species, therefore, it should be conducted out comparative FISH study with A. sikokianus and A. bhotanensis which are very similar to A. koraiensis morphologically.

Molecular phylogenetic study of Pinus in Korea based on chloroplast DNA psbA-trnH and atpF-H sequences data (엽록체 DNA psbA-trnH와 atpF-H 염기서열에 기초한 한국산 소나무속의 분자계통학적 연구)

  • Hong, Jeong-Ki;Yang, Jong-Cheol;Lee, You-Mi;Kim, Joo-Hwan
    • Korean Journal of Plant Taxonomy
    • /
    • v.44 no.2
    • /
    • pp.111-118
    • /
    • 2014
  • This study aims to define the phylogenetic relationship within Korean Pinus L. and to find the molecular markers which resolve the phylogenetic relationship in genus Pinus. cpDNA atpF-H and psbA-trnH regions were used as molecular markers. We performed the molecular phylogenetic study on 17 taxa of Pinus in Korea. The combined analyses of two gene loci showed that Korean Pinus was a monophyletic group supported by 100% BP. According to the results of separate analyses, psbA-trnH region seems to work better resolving power to clarify the phylogenetic ambiguity in Korean Pinus than those of atpF-H region. Also, we tried to checked the value and resolution of two chloroplast DNA loci on phylogenetic implications.

A phylogenetic analysis of the Korean endemic species Paraphlomis koreana (Lamiaceae) inferred from nuclear and plastid DNA sequences

  • Eun-Kyeong HAN;Jung-Hyun KIM;Jin-Seok KIM;Chang Woo HYUN;Dong Chan SON;Gyu Young CHUNG;Amarsanaa GANTSETSEG;Jung-Hyun LEE;In-Su CHOI
    • Korean Journal of Plant Taxonomy
    • /
    • v.53 no.2
    • /
    • pp.157-165
    • /
    • 2023
  • Paraphlomis koreana (Lamiaceae) was newly named and added to Korean flora in 2014. Paraphlomis belongs to the tribe Paraphlomideae, along with Ajugoides and Matsumurella. However, a recent study has suggested that P. koreana is morphologically similar to Matsumurella chinensis, making them difficult to distinguish from each other. Therefore, we aimed to examine the phylogenetic placement of P. koreana within the tribe and compare its genetic relationship with M. chinensis. We sequenced an additional complete plastid genome for an individual of P. koreana and generated sequences of nuclear ribosomal (nr) DNA regions of internal and external transcribed spacers (ITS and ETS) for two individuals of P. koreana. Maximum likelihood analyses based on two nrDNA regions (ITS and ETS) and four plastid DNA markers (rpl16 intron, rpl32-trnL, rps16 intron, and trnL-F) covering 13 Paraphlomis species and M. chinensis were conducted. Phylogenetic analyses concordantly supported that P. koreana forms a monophyletic group with M. chinensis. Moreover, our study revealed that P. koreana includes nrDNA sequences of M. chinensis as minor intra-individual variants, suggesting that the genetic divergence between the two taxa is incomplete and may represent intraspecific variation rather than distinct species. In conclusion, our findings suggest that the independent species status of P. koreana within Paraphlomis should be reconsidered.

Molecular phylogenetic relationships and speciation of Ranunculus cantoniensis (Ranunculaceae) (털개구리미나리(Ranunculus cantoniensis)의 분자계통학적 유연관계 및 종분화)

  • Lee, Chang Shook;Lee, Nam Sook;Yeau, Sung Hee
    • Korean Journal of Plant Taxonomy
    • /
    • v.34 no.4
    • /
    • pp.335-358
    • /
    • 2004
  • To investigate molecular phylogenetic relationships and to test hypothesis of hybrid origin of Ranunculus cantoniensis (Ranunculaceae), the sequences of nrDNA and chloroplast DNA were analyzed for 8 taxa and 25 accessions including 5 accessions of outgroup. In the phylogenetic trees by analyses of maximum parsimony and maximum likelihood for ITS nrDNA sequences and combined data of psbA-trnH, rps16 and trnL sequences of cpDNA, R. cantoniensis was most closely related to R. chinensis, and then to R. taciroi and R. silerifolius. The molecular phylogenetic relationships were not congruent with the previous report that R. cantoniensis was most closely related to R. silerifolius. In the sequence analysis of ITS and psbA-trnH, rps16, trnL for R. cantoniensis and the related taxa, R. cantoniensis showed polymorphism. It supported that the polymorphism also was reported in chromosome number and karyotype of R. cantoniensis. Ranunculus cantoniensis shared the marker gene of R. chinensis and R. silerifolius in ITS, and one of R. silerifolius in cpDNA. These results supported the hypothesis that R. cantoniensis was caused by hybridization between R. chinensis and R. silerifolius based on chromosome number and karyotype, and also estimated that R. silerifolius might be of maternal origin and R. chinensis be paternal.

Molecular phylogenetic study of section Sabina (Genus Juniperus) in Korea based on chloroplast DNA matK and psbA-trnH sequences data (엽록체 DNA matK와 psbA-trnH 염기서열에 기초한 한국산 향나무절(향나무속) 식물의 분자계통학적 연구)

  • Hong, Jeong-Ki;Yang, Jong-Cheol;Oh, Seung-Hwan;Lee, You-Mi
    • Korean Journal of Plant Taxonomy
    • /
    • v.44 no.1
    • /
    • pp.51-58
    • /
    • 2014
  • This study aims to define the phylogenetic relationship within Korean section sabina and find molecular markers which resolve the phylogenetic relationship in genus Juniperus and section sabina. cpDNA matK and psbA-trnH were used as molecular markers. The combined analyses of two genes suggested that section sabina was a clade supported by 100% BP. The relationships of [J. chinensis var. sargentii+J. davurica] clade and [J. chinensis var. chinensis+J. chinensis var. procumbens+J. chinensis var. horizontalis] clade were supported by 91% BP and 100% BP, respectively. Thus, the classification of Korean section sabina would be appropriate at follows, (1) J. chinensis var. sargentii+J. davurica, and (2) J. chinensis var. chinensis+J. chinensis var. procumbens According to the results of separate analyses, matK seems to work better resolving power to clarify the phylogenetic ambiguity in Juniperus and section sabina than psbA-trnH.