• Title/Summary/Keyword: DNA recognition

Search Result 165, Processing Time 0.028 seconds

Evolution of CRISPR towards accurate and efficient mammal genome engineering

  • Ryu, Seuk-Min;Hur, Junseok W;Kim, Kyoungmi
    • BMB Reports
    • /
    • v.52 no.8
    • /
    • pp.475-481
    • /
    • 2019
  • The evolution of genome editing technology based on CRISPR (clustered regularly interspaced short palindromic repeats) system has led to a paradigm shift in biological research. CRISPR/Cas9-guide RNA complexes enable rapid and efficient genome editing in mammalian cells. This system induces double-stranded DNA breaks (DSBs) at target sites and most DNA breakages induce mutations as small insertions or deletions (indels) by non-homologous end joining (NHEJ) repair pathway. However, for more precise correction as knock-in or replacement of DNA base pairs, using the homology-directed repair (HDR) pathway is essential. Until now, many trials have greatly enhanced knock-in or substitution efficiency by increasing HDR efficiency, or newly developed methods such as Base Editors (BEs). However, accuracy remains unsatisfactory. In this review, we summarize studies to overcome the limitations of HDR using the CRISPR system and discuss future direction.

Rho-dependent Transcription Termination: More Questions than Answers

  • Banerjee Sharmistha;Chalissery Jisha;Bandey Irfan;Sen Ranjan
    • Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.11-22
    • /
    • 2006
  • Escherichia coli protein Rho is required for the factor-dependent transcription termination by an RNA polymerase and is essential for the viability of the cell. It is a homohexameric protein that recognizes and binds preferably to C-rich sites in the transcribed RNA. Once bound to RNA, it utilizes RNA-dependent ATPase activity and subsequently ATPase-dependent helicase activity to unwind RNA-DNA hybrids and release RNA from a transcribing elongation complex. Studies over the past few decades have highlighted Rho as a molecule and have revealed much of its mechanistic properties. The recently solved crystal structure could explain many of its physiological functions in terms of its structure. Despite all these efforts, many of the fundamental questions pertaining to Rho recognition sites, differential ATPase activity in response to different RNAs, translocation of Rho along the nascent transcript, interactions with elongation complex and finally unwinding and release of RNA remain obscure. In the present review we have attempted to summarize 'the knowns' and 'the unknowns' of the Rho protein revealed by the recent developments in this field. An attempt has also been made to understand the physiology of Rho in the light of its phylogeny.

A phylogenetic analysis of the genus Pilea (Urticaceae) using nrDNA and cpDNA sequences (한국산 물통이속(Pilea) 식물의 nrDNA, cpDNA를 통한 계통분석)

  • Moon, Ae-Ra;Park, Jeong-Mi;Jang, Chang-Gee
    • Korean Journal of Plant Taxonomy
    • /
    • v.45 no.2
    • /
    • pp.158-168
    • /
    • 2015
  • A study of the genus Pilea in Korea including five taxa was carried out using molecular phylogenetic methods. The majority of members of the genus Pilea in Korea are annual herbs, and they live in moist habitats, flowering in summer and fruiting in autumn. The results of a phylogenetic analysis using nrDNA and cpDNA supported the recognition of P. japonica, P. peploides, and P. taquetii. Pilea taquetii from Mt. Sanbangsan in Jeju was nested within P. hamaoi and P. mongolica clade instead of the P. taquetii clade, with P. taquetii from Mt. Jirisan also separated from the P. taquetii clade. This indicates that the separation is not geographical isolation, but is instead related to taxonomic problems. Therefore, further study of the P. taquetii group is necessary.

Alteration of Recognition Sequence by Restriction Endonuclease -Effect of pH and Hydrophobicity on BamHI- (제한효소의 인식자리 변화 -BamHI 특이성에 미치는 산도와 소수성의 영향-)

  • 이강민
    • KSBB Journal
    • /
    • v.11 no.2
    • /
    • pp.193-200
    • /
    • 1996
  • In molecular biology, type-II restriction endonuclease, which specifically recognize and cleave DNA at a limited number of sites, have been exploited as a means of characterizing DNA fragments, DNA mapping for genetic engineering. Type-II restriction endonucleases have been found to modulate their substrate specificity under modified conditions such as extreme pH, ionic strength, high enzyme concentration, substitution of metallic cofactors or addition of organic solvents. This study was initiated to investigate the modification of recognition specificity of BamHI according to the different pH and organic solvent under the given buffer condition. The specificity of BamHI is highly depends on the presence of hydrophobicity (LogP: partition coefficient) and pH of reaction solution. The specificity of BamHI is changed in range of LogP -1.03∼-1.35(at pH 7.5), -1.03∼-2.5 (at pH 8.0), -0.75∼-0.25(at pH 8.5), 0.32∼-2.5(at pH 8.9), respectively. Alteration of specificity appears in lower concentration of organic solvent when the reaction occurs in more alkali pH. For example, in DMSO solution, alteration of specificity appears in 20% concentration at pH 7.5 but in 4% concentration at pH 8.9.

  • PDF

Polymorphisms of the Lipoprotein Lipase Gene of Red Seabream, Pagrus major (참돔의 lipoprotein lipase 유전자 다형성)

  • Jang, Yo-Soon;Hong, Kyung-Pyo;Noh, Choong-Hwan
    • Ocean and Polar Research
    • /
    • v.26 no.4
    • /
    • pp.551-557
    • /
    • 2004
  • Polymorphism of the lipoprotein lipase (LPL) gene which plays an important role in regulation of lipid deposition was analysed in two red seabream (pagrus major) populations (KF4, cultured KORDI line, n=100 : JPN, imported from Japan, n=100). We amplified a DNA fragment (1,091 bp) including the exon 2 region of the LPL gene, and conducted PCR-RFLP analysis using MspI and AluI. The PCR products were also sequenced. Two alleles (A and B) were found in MspI digestion and Sve alleles (A, B, C, D and E) in AluI digestion. The sequenced data revealed four nucleotide substitutions including one transversion at the MspI recognition site (nt 2,235, $C{\rightarrow}10$) and three transitions at the AluI recognition sites (nt 1,721, $A{\rightarrow}G;$ nt 2,319, $C{\rightarrow}T;$ nt 2,319, $T{\rightarrow}C$). Among them, substitutions at the nt 2,235 and 2,319 sites which are located in the exon 2 were proved to be silent point mutations. MspI polymorphism resulted in 3 genotypes, and the allele frequency was significantly different between the two fish populations, KF4 and JPN. In the case of AluI polymorphism, the 5 alleles (A, B, C, D, E) comprised 12 genotypes of the 5 alleles. KF4 population, alleles D and I were specific to the LPL gene Polymorphisms would be useful DNA markers for red seabream population.

Expression and regulation of self-incompatible genes in Brassica (배추과 작물의 자가불화합성 유전자의 발현 및 조절)

  • Park, Jong-In;Lee, In-Ho;Watanabe, Masao;Nou, Ill-Sup
    • Journal of Plant Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.186-195
    • /
    • 2010
  • In most self-incompatible plant species, recognition of self-pollen is controlled by a single locus, termed the S-locus. The self-incompatibility (SI) system in Brassica is controlled sporophytically by multiple alleles at a single locus, designated as S, and involves cell-cell communication between male and female. Two highly polymorphic S locus genes, SLG (S locus glycoprotein) and SRK (S receptor kinase), have been identified, both of which are expressed predominantly in the stigmatic papillar cell. Gain-of-function experiments have demonstrated that SRK solely determines S haplotype-specificity of the stigma, while SLG enhances the recognition reaction of SI. The sequence analysis of the S locus genomic region of B. campestris (syn. rapa) has led to the identification of an anther-specific gene, designated as SP11/SCR, which is the male S determinant. Molecular analysis has demonstrated that the dominance relationships between S alleles in the stigma were determined by SRK itself, but not by the relative expression level. In contrast, the expression of SP11/SCR from the recessive S allele was specifically suppressed in the S heterozygote, suggesting that the dominance relationships in pollen were determined by the expression level of SP11/SCR. Furthermore, recent studies on recessive allele-specific DNA methylation of Brassica self-incompatibility alleles demonstrate that DNA methylation patterns in plants can vary temporally and spatially in each generation. In this review, we firstly present overview of self incompatibility system in Brassica and then describe dominance relationships in Brassica self- incompatibility regulated by allele-specific DNA methylation.

Emotion Recognition Method for Driver Services

  • Kim, Ho-Duck;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.256-261
    • /
    • 2007
  • Electroencephalographic(EEG) is used to record activities of human brain in the area of psychology for many years. As technology developed, neural basis of functional areas of emotion processing is revealed gradually. So we measure fundamental areas of human brain that controls emotion of human by using EEG. Hands gestures such as shaking and head gesture such as nodding are often used as human body languages for communication with each other, and their recognition is important that it is a useful communication medium between human and computers. Research methods about gesture recognition are used of computer vision. Many researchers study Emotion Recognition method which uses one of EEG signals and Gestures in the existing research. In this paper, we use together EEG signals and Gestures for Emotion Recognition of human. And we select the driver emotion as a specific target. The experimental result shows that using of both EEG signals and gestures gets high recognition rates better than using EEG signals or gestures. Both EEG signals and gestures use Interactive Feature Selection(IFS) for the feature selection whose method is based on the reinforcement learning.

DNA Structural Perturbation Induced by the CPI-Derived DNA Interstrand Cross-linker : Molecular Mechanisms for the Sequence Specific Recognition

  • Park, Hyun-Ju
    • Archives of Pharmacal Research
    • /
    • v.24 no.5
    • /
    • pp.455-465
    • /
    • 2001
  • The highly potent cytotoxic DNA-DNA cross-linker consists of two cyclopropa[c]pyrrolo[3,4-3]indol-4(5H)-ones insoles [(+)-CPI-I] joined by a bisamido pyrrole (abbreviated to "Pyrrole"). The Pyrrole is a synthetic analog of Bizelesin, which is currently in phase II clinical trials due to its excellent in vivo antitumor activity. The Pyrrole has 10 times more potent cytotoxicity than Bizelesin and mostly form DNA-DNA interstrand cross-links through the N3 of adenines spaced 7 bp apart. The Pyrrole requires a centrally positioned GC base pair for high cross-linking reactivity (i.e., $5^1$-T$AT_2$A*-$3^1$), while Bizelesin prefers purely AT-rich sequences (i.e., $5^1$-T$AT_4$A*-$3^1$, where /(equation omitted) represents the cross-strand adenine alkylation and A* represents an adenine alkylation) (Park et al., 1996). In this study, the high-field $^1$H-NMR and rMD studies are conducted on the 1 1-mer DNA duplex adduct of the Pyrrole where the 5′(equation omitted)TAGTTA*-3′sequence is cross-linked by the drug. A severe structural perturbation is observed in the intervening sequences of cross-linking site, while a normal B-DNA structure is maintained in the region next to the drug-modified adenines. Based upon these observations, we propose that the interplay between the bisamido pyrrole unit of the drug and central C/C base pair (hydrogen-bonding interactions) is involved in the process of cross-linking reaction, and sequence specificity is the outcome of those interactions. This study suggests a mechanism for the sequence specific cross-linking reaction of the Pyrrole, and provides a further insight to develop new DNA sequence selective and distortive cross-linking agents.

  • PDF

Recombinant α and β Subunits of M.AquI Constitute an Active DNA Methyltransferase

  • Pinarbasi, Hatice;Pinarbasi, Ergun;Hornby, David
    • BMB Reports
    • /
    • v.35 no.3
    • /
    • pp.348-351
    • /
    • 2002
  • AquI DNA methyltransferase, M.AquI, catalyses the transfer of a methyl group from S-adenosyl-L-methionine to the C5 position of the outermost deoxycytidine base in the DNA sequence 5'CYCGRG3'. M.AquI is encoded by two overlapping ORFs (termed $\alpha$ and $\beta$) instead of the single ORF that is customary for Class II methyltransferase genes. The structural organization of the M.AquI protein sequence is quite similar to that of other bacterial C5-DNA methyltransferases. Ten conserved motifs are also present in the correct order, but only on two polypeptides. We separately subcloned the genes that encode the $\alpha$ and $\beta$ subunits of M.AquI into expression vectors. The overexpressed His-fusion $\alpha$ and $\beta$ subunits of the enzyme were purified to homogeneity in a single step by Nickel-chelate affinity chromatography. The purified recombinant proteins were assayed for biological activity by an in vitro DNA tritium transfer assay. The $\alpha$ and $\beta$ subunits of M.AquI alone have no DNA methyltransferase activity, but when both subunits are included in the assay, an active enzyme that catalyses the transfer of the methyl group from S-adenosyl-L-methionine to DNA is reconstituted. We also showed that the $\beta$ subunit alone contains all of the information that is required to generate recognition of specific DNA duplexes in the absence of the $\alpha$ subunit.

cDNA Sequence of a Novel Immulectin Homologue from the Silkworm, Bombyx mori

  • Kim, Seong-Ryul;Lee, Kwang-Sik;Kim, Iksoo;Kang, Seok-Woo;Nho, Si-Kab;Sohn, Hung-Dae;Jin, Byung-Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.6 no.1
    • /
    • pp.99-102
    • /
    • 2003
  • A cDNA of novel immulectin homologue (BmIML), a C-type lectin, was cloned from the silkworm, Bombyx mori. The immulectin cDNA is an open reading frame of 921 bp encoding 307 amino acid residues. The deduced amino acid sequence from the BmIML cDNA contains two C-type carbohydrate recognition domains (CRDs). The BmIML was most similar (61 % protein sequence identity) to the M. sexta immulectin-1, whereas BmIML showed relatively lower identity to the B. mori lipopolysaccharide-binding protein (25% protein sequence identity). These features of BmIML indicate that BmIML is a novel member of C-type lectin superfamily. Northern blot analysis revealed that the BmIML is specifically expressed in the fat body of B. moli larvae.