• Title/Summary/Keyword: DNA polymorphisms

Search Result 584, Processing Time 0.025 seconds

Interstrain polymorphisms of isoenzyme profiles and mitochondrial DNA fingerprints among seven strains assigned to Acanthamoeba polyphaga (대식가시아메바(Acmthamoebapokphaga) 일곱 분리주간의 동위효소 profile과 Mitochondria DNA fingerprint의 다양성)

  • Gong, Hyeon-Hui;Park, Jun-Hyeong;Jeong, Dong-Il
    • Parasites, Hosts and Diseases
    • /
    • v.33 no.4
    • /
    • pp.331-340
    • /
    • 1995
  • Interstrain polymorphisms of isoenzyme profiles and mitochondrial (Mt) DNA fingerprints were observed among seven strains of Acnnthnmoeba isolated from different sources and morphologically assigned to A. polvphngn. Mt DNA ringerprints by eight restriction endonucleases (Bgl II, Sca I, Cla I, EcoR I, Xbo I, Kpn I, Sal I, and Sst I) revealed considerable interstrain polymorphisms . Isoenzyme profiles revealed considerable interstrain polymorphisms for acid phosphatase, lactate dehydrogenase, and glucose-6- phosphate dehydrogenase while those for glucose phosphate isomerase , leucine aminopeptidase , and malate dehydrogenase showed similarity Despite of the interstrain polymorphisms, the isoengyme profiles and Mt DNA fingerprints of the strain Ap were found to be identical with those of the strain .tones . Mt DNA fingerprinting was found to be highly applicable for the strain identification, characterization, and differentiation. Key words: Acanthnmoebn polyphcga, interstrain polymorphism, isoenzyme profiles , Mt DNA fingerprints, strain differentiation, strain identification.

  • PDF

Discrimination of Korean Native Chicken Populations Using SNPs from mtDNA and MHC Polymorphisms

  • Hoque, M.R.;Lee, S.H.;Jung, K.C.;Kang, B.S.;Park, M.N.;Lim, H.K.;Choi, K.D.;Lee, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.12
    • /
    • pp.1637-1643
    • /
    • 2011
  • Korean native chickens are a very valuable chicken population in Korea and their prices are higher than that of commercial broilers. In order to discriminate two commercial Korean native chicken populations (CCP1 and CCP2), single nucleotide polymorphisms (SNPs) from mitochondrial (mt) DNA D-loop sequences and LEI0258 marker polymorphisms in the major histocompatibility complex (MHC) region were investigated. A total of 718 birds from nine populations were sampled and 432 mtDNA sequences were obtained. Of these, two commercial Korean native chicken populations (363 birds) were used for investigation of their genetic relationship and breed differentiation. The sequence data classified the chickens into 20 clades, with the largest number of birds represented in clade 1. Analysis of the clade distribution indicated the genetic diversity and relation among the populations. Based on the mtDNA sequence analysis, three selected SNPs from mtDNA polymorphisms were used for the breed identification. The combination of identification probability (Pi) between CCP1 and CCP2 using SNPs from mtDNA and LEI0258 marker polymorphisms was 86.9% and 86.1%, respectively, indicating the utility of these markers for breed identification. The results will be applicable in designing breeding and conservation strategies for the Korean native chicken populations and also used for the development of breed identification markers.

Relationship between Endurance Performance and Genetic Polymorphisms of Mitochondrial DNA in Korean Male Elite Athletes

  • Jang Dai-Ho;Kang Byung-Yong;Jung In-Geun;Oh Sang-Duk;Lee Kang-Oh
    • Biomedical Science Letters
    • /
    • v.11 no.2
    • /
    • pp.227-235
    • /
    • 2005
  • It has been reported that endurance performance is influenced by various environmental and genetic factors. In view of an important role of human mitochondrial DNA (mtDNA) as a candidate for endurance performance, this study focused on the relationships between $VO_{2max}$ value as a measure of endurance performance or other associated phenotypes and four mtDNA restriction fragment length polymorphisms (RFLPs) (Bam HI, Hinc II1, Hinc II2 and Nci I) in the NADH dehydrogenase subunit 5 and one (Kpn I) in the D-loop region of mtDNA. MtDNA was purified from buffy coat in human peripheral blood, and PCR-RFLP analysis was performed to estimate the allele frequencies of each polymorphism in the mtDNA. There were no significant differences in allele distributions of all polymorphisms studied between male athletes and controls, respectively (P>0.05). However, the Kpn I polymorphism was significantly associated with diastolic blood pressure level in male athletes, respectively (P<0.05). Therefore, our results suggest that this polymorphism might be one of the factors modifying inter-individual difference in cardiovascular risk. Further studies using larger sample size will be required to generalize these results from the study described herein.

  • PDF

SNP Detection Using Indicator-free DNA Chip (비수식화 DNA를 이용한 유전자 검출)

  • Choi, Yong-Sung;Moon, Jong-Dae;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.410-411
    • /
    • 2006
  • High throughput analysis using a DNA chip microarray is powerful tool in the post genome era. Less labor-intensive and lower cost-performance is required. Thus, this paper aims to develop the multi-channel type label-free DNA chip and detect SNP (Single nucleotide polymorphisms). At first, we fabricated a high integrated type DNA chip array by lithography technology. Various probe DNAs were immobilized on the microelectrode array. We succeeded to discriminate of DNA hybridization between target DNA and mismatched DNA on microarray after immobilization of a various probe DNA and hybridization of label-free target DNA on. the electrodes simultaneously. This method is based on redox of an electrochemical ligand.

  • PDF

Genetic Variation in a DNA Double Strand Break Repair Gene in Saudi Population: A Comparative Study with Worldwide Ethnic Groups

  • Areeshi, Mohammed Yahya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7091-7094
    • /
    • 2013
  • DNA repair capacity is crucial in maintaining cellular functions and homeostasis. However, it can be altered based on DNA sequence variations in DNA repair genes and this may lead to the development of many diseases including malignancies. Identification of genetic polymorphisms responsible for reduced DNA repair capacity is necessary for better prevention. Homologous recombination (HR), a major double strand break repair pathway, plays a critical role in maintaining the genome stability. The present study was performed to determine the frequency of the HR gene XRCC3 Exon 7 (C18067T, rs861539) polymorphisms in Saudi Arabian population in comparison with epidemiological studies by "MEDLINE" search to equate with global populations. The variant allelic (T) frequency of XRCC3 (C>T) was found to be 39%. Our results suggest that frequency of XRCC3 (C>T) DNA repair gene exhibits distinctive patterns compared with the Saudi Arabian population and this might be attributed to ethnic variation. The present findings may help in high-risk screening of humans exposed to environmental carcinogens and cancer predisposition in different ethnic groups.

DNA Repair Gene Polymorphisms at XRCC1, XRCC3, XPD, and OGG1 Loci in the Hyderabad Population of India

  • Parine, Narasimha Reddy;Pathan, Akbar Ali Khan;Bobbarala, Varaprasad;Abduljaleel, Zainularifeen;Khan, Wajahatullah;Alanazi, Mohammed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6469-6474
    • /
    • 2012
  • Background: DNA repair is one of the crucial defense mechanism against mutagenic exposure. Inherited SNPs of DNA repair genes may contribute to variation in DNA repair capacity and susceptibility to cancer. Due to the presence of these variants, inter-individual and ethnic differences in DNA repair capacity have been established in various populations. India harbors enormous genetic and cultural diversity. Materials and Methods: In the present study we aimed to determine the genotypes and allele frequencies of XRCC1 Arg399Gln (rs25487), XRCC3 Thr241Met (rs861539), XPD Lys751Gln (rs13181), and OGG1 Ser326Cys (rs1052133) gene polymorphisms in 186 healthy individuals residing in the Hyderabad region of India and to compare them with HapMap and other populations. Results and Conclusions: The genotype and allele frequency distribution at the four DNA repair gene loci among Hyderabad population of India revealed a characteristic pattern. Comparison of these gene polymorphisms with other populations revealed a distinctiveness of Hyderabad population from the Deccan region of India. To the best of our knowledge, this is the first report of such DNA repair gene polymorphisms in the Deccan Indian population.

Epidermal Growth Factor Receptor Gene Polymorphisms and Gastric Cancer in Iran

  • Abediankenari, Saeid;Jeivad, Fereshteh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.3187-3190
    • /
    • 2013
  • Background: Epidermal growth factor receptor (EGFR) is a transmembrane receptor which contributes to many processes involved in cell survival, proliferation and inhibits apoptosis, that may lead to cancer development. Gastric cancer is one of the most common diseases of digestive system that has low 5-year-survival. The aim of this research was to determine the significance of EGFR tyrosine kinase domain gene polymorphisms in gastric cancer in Iran. Materials and Methods: In the present study, 83 patients with gastric cancer and 40 normal subjects were investigated for EGFR gene polymorphisms in exons 18-21 by PCR-SSCP. Then, DNA sequencing was conducted for different mobility shift bands. Finally the data were statistically analyzed using the chi-2 test and the SPSSver.16 program. Results: Exon 18 of EGFR gene showed three different bands in SSCP pattern and DNA sequencing displayed one mutation. SSCP pattern of Exons 19 and 21 did not show different migration bands. Exon 20 of EGFR gene revealed multiple migrate bands in SSCP pattern. DNA sequencing displayed 2 mutations in this exon: one mutation was caused amino acid change and another mutation was silent. Conclusion: It may be that EGFR tyrosine kinase gene polymorphisms differ between populations and screening could be useful in gastric cancer patients who might benefit from tyrosine kinase inhibitor therapy.

DNA Repair Gene Polymorphisms Do Not Predict Response to Radiotherapy-Based Multimodality Treatment of Patients with Rectal Cancer: a Meta-analysis

  • Guo, Cheng-Xian;Yang, Guo-Ping;Pei, Qi;Yin, Ji-Ye;Tan, Hong-Yi;Yuan, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.713-718
    • /
    • 2015
  • Background: A number of association studies have been carried out to investigate the relationship between genetic polymorphisms in DNA repair genes and response to radiotherapy-based multimodality treatment of patients with rectal cancer. However, their conclusions were inconsistent. The objective of the present study was to assess the role of DNA repair gene genetic polymorphisms in predicting genetic biomarkers of the response in rectal cancer patients treated with neoadjuvant chemoradiation. Materials and Methods: Studies were retrieved by searching the PubMed database, Cochrane Library, Embase, and ISI Web of Knowledge. We conducted a meta-analysis to evaluate the association between genetic polymorphisms and the response in rectal cancer treated with neoadjuvant chemoradiation by checking odds ratios (ORs) and 95% confidence intervals (CIs). Results: Data were extracted from 5 clinical studies for this meta-analysis. The results showed that XRCC1 RS25487, XRCC1 RS179978, XRCC3 RS861539, ERCC1 RS11615 and ERCC2 RS13181 were not associated with the response in the radiotherapy-based multimodality treatment of patients with rectal cancer (p>0.05). Conclusions: This study shows that DNA repair gene common genetic polymorphisms are not significantly correlated with the radiotherapy-based multimodality treatment in rectal cancer patients.

Detection of SNP Using Microelectrode Array Biochip (마이크로전극어레이형 바이오칩을 이용한 SNP의 검출)

  • Choi, Yong-Sung;Kwon, Young-Soo;Paek, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.845-848
    • /
    • 2004
  • High throughput analysis using a DNA chip microarray is powerful tool in the post genome era. Less labor-intensive and lower cost-performance is required. Thus, this paper aims to develop the multi-channel type label-free DNA chip and detect SNP (Single nucleotide polymorphisms). At first, we fabricated a high integrated type DNA chip array by lithography technology. Various probe DNAs were immobilized on the microelectrode array. We succeeded to discriminate of DNA hybridization between target DNA and mismatched DNA on microarray after immobilization of a various probe DNA and hybridization of label-free target DNA on the electrodes simultaneously. This method is based on redox of an electrochemical ligand.

  • PDF

Evaluation of Nonanchored Inter Simple Sequence Repeat (ISSR) Marker to Detect DNA Damage in Common Bean (Phaseolus vulgaris L.) Exposed to Acrylamide

  • Enan, Mohamed R.
    • Journal of Forest and Environmental Science
    • /
    • v.24 no.2
    • /
    • pp.61-68
    • /
    • 2008
  • Acrylamide is present as a contaminant in heated food products, predominantly from the precursor asparagine. Nonanchored inter simple sequence repeats (ISSRs) are arbitrary multiloci markers produced by PCR amplification with a microsatellite primer. In order to assess the feasibility of microsatellite primers as markers for DNA damage, the study was conducted on common bean (Phaseolus vulgaris L.) exposed to different concentrations of acrylamide. Polymorphisms were abundant among plant samples treated with acrylamide in comparison to control (untreated one) tested with 4- tri-nucleotide, 2 tetra-nucleotide, and 3- dinucelotide primers. The primer (CCG)4 was the best tested primer to generate polymorphism between the DNA of plants treated or not by acrylamide. Polymorphisms became evident as the presence and absence of DNA fragments in treated samples compared with the untreated one. The highest number of DNA variation on ISSR patterns was observed at the micromollar concentrations of acrylamide. Acrylamide was able to induce DNA damage in non concentration-dependent manner with effectiveness at micromollar concentrations. This study demonstrated that ISSR markers can be highly reliable for identification of DNA damage induced by acrylamide.

  • PDF