Browse > Article
http://dx.doi.org/10.5713/ajas.2011.11144

Discrimination of Korean Native Chicken Populations Using SNPs from mtDNA and MHC Polymorphisms  

Hoque, M.R. (Department of Animal Science and Biotechnology, Chungnam National University)
Lee, S.H. (Hanwoo Experiment Station, National Institute of Animal Science, RDA)
Jung, K.C. (National Agricultural Products Quality Management Service)
Kang, B.S. (Poultry Science Division, National Institute of Animal Science, RDA)
Park, M.N. (Animal Genomics & Bioinformatics Division, National Institute of Animal Science, RDA)
Lim, H.K. (Graduate School of Bio & Information Technology, Hankyong National University)
Choi, K.D. (Graduate School of Bio & Information Technology, Hankyong National University)
Lee, J.H. (Department of Animal Science and Biotechnology, Chungnam National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.24, no.12, 2011 , pp. 1637-1643 More about this Journal
Abstract
Korean native chickens are a very valuable chicken population in Korea and their prices are higher than that of commercial broilers. In order to discriminate two commercial Korean native chicken populations (CCP1 and CCP2), single nucleotide polymorphisms (SNPs) from mitochondrial (mt) DNA D-loop sequences and LEI0258 marker polymorphisms in the major histocompatibility complex (MHC) region were investigated. A total of 718 birds from nine populations were sampled and 432 mtDNA sequences were obtained. Of these, two commercial Korean native chicken populations (363 birds) were used for investigation of their genetic relationship and breed differentiation. The sequence data classified the chickens into 20 clades, with the largest number of birds represented in clade 1. Analysis of the clade distribution indicated the genetic diversity and relation among the populations. Based on the mtDNA sequence analysis, three selected SNPs from mtDNA polymorphisms were used for the breed identification. The combination of identification probability (Pi) between CCP1 and CCP2 using SNPs from mtDNA and LEI0258 marker polymorphisms was 86.9% and 86.1%, respectively, indicating the utility of these markers for breed identification. The results will be applicable in designing breeding and conservation strategies for the Korean native chicken populations and also used for the development of breed identification markers.
Keywords
mtDNA; LEI0258 Marker; Discrimination; Korean Native Chicken;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Piertney, S. B. and M. K. Oliver. 2006. The evolutionary ecology of the major histocompatibility complex. Heredity 96:7-21.
2 Sasazaki, S., K. Itoh, S. Arimitsu, T. Imada, A. Takasuga, H. Nagaishi, S. Takano, H. Mannen and S. Tsuji. 2004. Development of breed identification markers derived from AFLP in beef cattle. Meat Sci. 67:275-280.   DOI   ScienceOn
3 Sasazaki, S., S. Odahara, C. Hiura, F. Mukai and H. Mannen. 2006. Mitochondrial DNA variation and genetic relationships in Japanese and Korean cattle. Asian-Aust. J. Anim. Sci. 19:1394-1398.   과학기술학회마을   DOI
4 Thompson, J. D., D. G. Higgins, T. J. Gibson and W. Clustal. 1994. Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680.   DOI
5 Wang, X., H. Chen and C. Z. Lei. 2007. Genetic diversity and phylogenetic analysis of the mtDNA D-loop region in Tibetan sheep. Asian-Aust. J. Anim. Sci. 20:313-315.   과학기술학회마을   DOI
6 Wayne, D., H. Willem, S. Ferguson and B. Paulette. 2002. Characterization and evolution of the mitochondrial DNA control region in hornbills (Bucerotiformes). J. Mol. Evol. 54:794-806.   DOI   ScienceOn
7 Lei, C. Z., W. Zhang, H. Chen, F. Lu, Q. L. Ge, R. Y. Liu, R. H. Dang, Y. Y. Yao, L. B. Yao, Z. F. Lu and Z. L. Zhao. 2007. Two maternal lineages revealed by mitochondrial DNA dloop sequences in Chinese native water buffaloes (Bubalusbubalis). Asian-Aust. J. Anim. Sci. 20:471-476.   DOI
8 Li, J. L., Y. Shi, C. Fan and D. Manglai. 2008. mtDNA diversity and origin of Chinese Mongolian horses. Asian-Aust. J. Anim. Sci. 21:1696-1702.   과학기술학회마을   DOI
9 Liu, Z. G., C. Z. Lei, J. Luo, C. Ding, G. H. Chen, H. Chang, K. H. Wang, X. X. Liu, X. Y. Zhang, X. J. Xiao and S. L. Wu. 2004. Genetic variability of mtDNA sequences in Chinese native chicken breeds. Asian-Aust. J. Anim. Sci. 17:903-909.   과학기술학회마을   DOI
10 Liu, Y. P., G. S. Wu, Y. G. Yao, Y. W. Miao, G. Luikart, M. Baig, A. B. Pereira, Z. L. Ding, M. G. Palanichamy and Y. P. Zhang. 2006. Multiple maternal origins of chickens: Out of the Asian jungles. Mol. Phylogenet. Evol. 38:12-19.   DOI   ScienceOn
11 McConnell, S. K., D. A. Dawson, A. Wardle and T. Burke. 1999. The isolation and mapping of 19 tetranucleotide microsatellite markers in the chicken. Anim. Genet. 30:183-189.   DOI   ScienceOn
12 Mindell, D. P., M. D. Sorenson, C. J. Huddleston, H. C. Miranda, A. Knight, S. J. Sawchuk and T. Yuri. 1997. Phylogenetic relationships among and within select avian orders based on mitochondrial DNA. In: Avian molecular evolution and systematic (Ed. D. P. Mindell). Academic press, San Diego. 214-247.
13 Moore, W. S. and V. R. Defilippis. 1997. The window of taxonomic resolution for phylogenies based on mitochondrial cytochrome b. In: Avian molecular evolution and systematic (Ed. D. P. Mindell). Academic press, San Diego. 84-119.
14 Odahara, S., H. J. Chung, S. H. Choi, S. L. Yu, S. Sasazaki, H. Mannan, C. S. Park and J. H. Lee. 2006. Mitochondrial DNA diversity of Korean native goats. Asian-Aust. J. Anim. Sci. 19:482-485.   과학기술학회마을   DOI
15 Baker, A. J. and H. D. Marshall. 1997. Mitochondrial control region sequences as tools for understanding evolution. In: Avian molecular evolution and systematic (Ed. D. P. Mindell). Academic press, San Diego. 51-82.
16 Bernatchez, L. and C. Landry. 2003. MHC studies in nonmodel vertebrates: what have we learned about natural selectionin 15 years? J. Evol. Biol. 16:363-377.   DOI   ScienceOn
17 Cann, R. L., W. M. Brown and A. C. Wilson. 1984. Polymorphic sites and the mechanism of evolution in human mitochondrial DNA. Genetics 106:479-499.
18 Komiyama, T., K. Ikeo and T. Gojobori. 2003. Where is the origin of the Japanese gamecock? Gene 317:195-202.   DOI   ScienceOn
19 Fu, Y., D. Niu and H. Ruan. 2001. Studies of genetic diversity of native chicken breeds in Zhejiang province of China. Acta Genetica Sinica. 28:606-613.
20 Fulton, J. E., H. R. Juul-Madsen, C. M. Ashwell, A. M. McCarron, J. A. Arthur, N. P. O'Sullivan and Jr. R. L. Taylor. 2006. Molecular genotype identification of the Gallus gallus major histocompatibility complex. Immunogenetics 58:407-421.   DOI
21 Komiyama, T., K. Ikeo and T. Gojobori. 2004. The evolutionary origin of long-crowing chicken: its evolutionary relationship with fighting cocks disclosed by the mtDNA sequence analysis. Gene. 333:91-99.   DOI   ScienceOn
22 Kumar, S., M. Nei, J. Dudley and K. Tamura. 2008. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief. Bioinform. 9:299-306.   DOI   ScienceOn
23 Lansman, R. A., J. C. Avise and M. D. Huettel. 1983. Critical experimental test of the possibility of 'paternal leakage' of mitochondrial DNA. Proc. Natl. Acad. Sci. USA. 80:1969-1971.   DOI
24 Aquadro, C. F. and B. D. Greenberg. 1983. Human mitochondrial DNA variation and evolution: Analysis of nucleotide sequences from seven individuals. Genetics 103:287-312.
25 Alves, E., C. Castellanos, C. Ovilo, L. Silio and C. Rodriguez. 2002. Differentiation of the raw material of the Iberian pig meat industry based on the use of amplified fragment length polymorphism. Meat Sci. 61:157-162.   DOI   ScienceOn