• Title/Summary/Keyword: DNA oxidation

Search Result 193, Processing Time 0.031 seconds

α-Asarone Modulates Activity of Matrix Metalloproteinase as well as Antioxidant Activity (α-Asarone이 항산화 활성 및 기질금속단백질 분해효소 활성 조절에 미치는 영향)

  • Park, Hye-Jung;Kim, Moon-Moo
    • Journal of Life Science
    • /
    • v.25 no.9
    • /
    • pp.1000-1006
    • /
    • 2015
  • α-Asarone is the main component of Acorus gramineus, which is a widely used oriental traditional medicine. A. gramineus is known to have a variety of medicinal effects, such as anti-gastric ulcer, antiallergy and antioxidant activity. It is also known to inhibit the release of histamine. However, the mechanism of its action remains unclear in humans. In this study, the effects of α-asarone on matrix metalloproteinase (MMP) and its antioxidant effect in a cell-free system were examined in HT1080 cells. In an MTT assay, the effect of α-asarone on cell viability showed no cytotoxicity below 16 μM. In an antioxidant assay, α-asarone increased reducing power in a dose-dependent manner but not the scavenging activity of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals. In addition, α-asarone exhibited the protective effect against DNA oxidation induced by hydroxyl radicals produced by the Fenton reaction. Furthermore, in a gelatin disk assay, α-asarone enhanced collagenase activity. It also increased the activities of MMP-2 and MMP-9 stimulated by phorbol 12-myristate 13-acetate (PMA) in a gelatin zymography. On the other hand, the activity of MMP-9 stimulated by phenazine methosulfate (PMS) but not that of MMP-2 was increased in the presence of α-asarone. These findings suggest that α-asarone could be a candidate for the prevention and treatment of pathological diseases related to oxidative stress and MMPs.

Effect of Polygala radix Hot Water Extract on Biological Activity in PC12 Cells (PC12 세포에서 생물학적 활성에 미치는 원지 열수 추출물의 효능)

  • Nam, Hyang;Kim, Moon-Moo
    • Journal of Life Science
    • /
    • v.23 no.8
    • /
    • pp.1041-1049
    • /
    • 2013
  • The root of Polygala radix has been widely known as an oriental traditional medicinal stuff that improves memory. However, its mechanism of action remains unclear. In this study, the effect of Polygala radix hot water extracts (PRHWE) on cognitive function related to the activity of acetylcholinesterase (AchE) derived from neural cells (PC12) in addition to antioxidant activity was examined both in a cell-free system and live cells. First, in the study on cell viability using an MTT assay, PRHWE did not exhibit any cell toxicity at 0.1% (w/v) or below. It also was observed that PRHWE increased the scavenging activity of DPPH radical, hydrogen peroxide and superoxide, reducing power in a dose-dependent manner. In particular, PRHWE had a protective effect on DNA oxidation induced by hydroxyl radicals. Additionally, it inhibited the production of inducible nitric oxide in neuronal cells. Furthermore, the AchE activity decreased with increasing concentrations. In addition, PRHWE increased the expression level of SOD-1 and NOS-2 in PC12 cells. Moreover, the transcriptional activities of p53 and NF-${\kappa}B$ were reduced in the presence of PRHWE in an experiment using a reporter gene assay. Therefore, these results prove that PRHE has antioxidative and protective effects on neuronal cells, suggesting that it may have great potential as a therapeutic agent for human health.

Effect of Ulmus macrocapa Ethanolic Extracts on Anti-oxidant Activity and Melanin Synthesis in B16F1 Cells (B16F1세포에서 항산화 활성 및 멜라닌 합성에 대한 유백피 에탄올 추출물의 효능)

  • Kwon, Eun-Jeong;Park, Hye-Jung;Kim, Moon-Moo;Lee, Kyeong Rok;Hong, Il;Lee, Do Gyeong;Oh, Yunghee
    • Journal of Life Science
    • /
    • v.24 no.9
    • /
    • pp.946-951
    • /
    • 2014
  • Melanin plays a key role in the protection of skin from ultraviolet light that generates reactive oxygen species (ROS), such as superoxide, hydroxyl radical, singlet oxygen and hydrogen peroxide. However, the ROS leading to the oxidation of lipids, proteins and DNA are involved in the overproduction of melanin that is known to cause melasma, age spots and freckles. Among the herb medicines, Ulmus macrocarpa used in this study was reported to contain flavonoids as a main component. The aim of this study is to investigate the whitening and anti-oxidant effects of Ulmus macrocarpa ethanolic extracts (UMEE) in B16F1 cells. UMEE below $3.12{\mu}g/ml$ did not show cytotoxicity. In an anti-oxidant experiment, UMEE showed not only high reducing power and scavenging activity on DPPH, but it was also observed that UMEE exhibit an inhibitory effect on lipid peroxidation. UMEE did not display an inhibitory effect on tyrosinase activity in vitro. However, UMEE inhibited melanin synthesis in B16F1 cells. In addition, UMEE reduced the expression levels of tyrosinase and tyrosinase-related protein-2 (TRP-2), which are key enzymes in melanogenesis. These results indicate that UMEE exert a whitening effect through the inhibition of both tyrosinase and TRP-2 expressions as well as anti-oxidant activity, suggesting that UMEE could have the functional potential for a whitening effect on the skin.

Antioxidant and Antiproliferative Activities of the Halophyte Angelica japonica Growing in Korean Coastal Area (한국 연안지역에 서식하는 갯강활의 항산화 및 암세포증식 억제 활성)

  • Jayapala, Priyanga S.;Oh, Jung Hwan;Kong, Chang-Suk;Sim, Hyun-Bo;Seo, Youngwan
    • Journal of Life Science
    • /
    • v.32 no.10
    • /
    • pp.749-761
    • /
    • 2022
  • This study evaluated the antioxidizing and antiproliferative effects of Angelica japonica extract and its solvent-partitioned fractions. A dried sample of the halophyte A. japonica was extracted twice using methylene chloride (CH2Cl2) and extracted twice again using methanol (MeOH). The combined crude extracts were then fractionated by solvent polarity into distilled water (water), n-butanol (n-BuOH), 85% aqueous methanol (85% aq.MeOH), and n-hexane fractions. The antioxidant activities of the crude extracts and their solvent-partitioned fractions were assessed according to their DPPH radical and peroxynitrite scavenging abilities, formation of intracellular reactive oxygen species (ROS), DNA oxidation, NO production, and ferric reducing antioxidant power (FRAP). The crude extract showed significant antioxidant activity in the overall antioxidizing bioassay systems. Among solvent-partitioned fractions, good antioxidant activities were observed in n-BuOH and 85% aq.MeOH fractions and significantly correlated with the polyphenol and flavonoid contents of the samples. Furthermore, all samples tested, including the crude extract, not only showed cytotoxic effects against human cancer cells (AGS, HT-29, MCF-7, and HT-1080) but also prevented cell migration in a dose-dependent manner in the wound healing assay using HT 1080. Among the solvent-partitioned fractions, the 85% aq.MeOH fraction most effectively inhibited the invasion of HT-1080 cells. Therefore, these results suggest that A. japonica may be a potential antioxidizing and antiproliferative agent.

Examination of Antioxidant and Immune-enhancing Functional Substances in Fermented Sea Cucumber (발효해삼의 항산화 및 면역강화 기능성 물질의 분석)

  • Sam Woong Kim;Ga-Hee Kim;Beom Cheol Kim;Lee Yu Bin;Lee Ga Bin;Sang Wan Gal;Chul Ho Kim;Woo Young Bang;Kyu Ho Bang
    • Journal of Life Science
    • /
    • v.34 no.7
    • /
    • pp.485-492
    • /
    • 2024
  • Sea cucumbers contain more than 50% protein in their solid content, and they also possess various bioactive substances such as saponins and mucopolysaccharides. This study analyzed the activities of various enzymes derived from Bacillus and lactic acid bacteria and determined to degrade the components of sea cucumbers. Among the analyzed strains, B. subtilis K26 showed the highest activities in protease and xylanase and relatively high activity in cellulase. Accordingly, samples of sea cucumber and water were mixed in equal proportions, sterilized, and then fermented by inoculating them with B. subtilis K26. Following this, a higher amino acid content was observed between 1.5 and 7.5 hr, a lower residual solid content in this time, and a lesser fermentation odor. The saponin content in fermented sea cucumber powder extracted with butanol was measured to be 1.12 mg/g. The chondroitin sulfate content was evaluated to be 5.11 mg/g in raw sea cucumber. The total polyphenol content, flavonoid content, and antioxidant activities were 6.95 mg gallic acid equivalent/g, 3.69 mg quercetin equivalent/g, and 3.69 mg quercetin equivalent/g in raw sea cucumber, respectively. Moreover, the DNA damage protective effect of fermented sea cucumber extract was found to be concentration-dependent, with a very strong effect at very low concentrations. Overall, we suggest that sea cucumber fermented with B. subtilis K26 has a high potential as a food for inhibiting oxidation, enhancing immunity, and improving muscle function in the human body thanks to its high free amino acid content.

다채널 표면 플라즈몬 공명 영상장치를 이용한 자기조립 단분자막의 표면 분석

  • Pyo, Hyeon-Bong;Sin, Yong-Beom;Yun, Hyeon-Cheol
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.74-78
    • /
    • 2003
  • Multi-channel images of 11-MUA and 11-MUOH self-assembled monolayers were obtained by using two-dimensional surface plasmon resonance (SPR) absorption. Patterning process was simplified by exploiting direct photo-oxidation of thiol bonding (photolysis) instead of conventional photolithography. Sharper images were resolved by using a white light source in combination with a narrow bandpass filter in the visible region, minimizing the diffraction patterns on the images. The line profile calibration of the image contrast caused by different resonance conditions at each points on the sensor surface (at a fixed incident angle) enables us to discriminate the monolayer thickness in sub-nanometer scale. Furthermore, there is no signal degradation such as photo bleaching or quenching which are common in the detection methods based on the fluorescence.

  • PDF

Effect of Ionizing Radiation and Mercury Chloride (II) on Cell Morphology in Yeast Cells Frequently and Temporarily Treated with Both Stressors (방사선과 염화수은의 일시 및 반복 복합 처리된 효모세포의 산화적 스트레스 적응과 형태 변화)

  • Kim, Su-Hyoun;Kim, Jin-Kyu
    • Korean Journal of Environmental Biology
    • /
    • v.28 no.2
    • /
    • pp.101-107
    • /
    • 2010
  • Metal ions are essential to life. However, some metals such as mercury are harmful, even when present at trace amounts. Toxicity of mercury arises mainly from its oxidizing properties. Ionizing radiation (IR) is an active tool for destruction of cancer cells and diagnosis of diseases, etc. IR induces DNA double strand breaks in the nucleus, In addition, it causes lipid peroxidation, ceramide generation, and protein oxidation in the membrane, cytoplasm and nucleus. Yeasts have been a commonly used material in biological research. In yeasts, the physiological response to changing environmental conditions is controlled by the cell types. Growth rate, mutation and environmental conditions affect cell size and shape distributions. In this work, the effect of IR and mercury chloride (II) on the morphology of yeast cells were investigated. Saccharomyces cerevisiae cells were treated with IR, mercury chloride (II) and IR combined with mercury chloride (II). Non-treated cells were used as a control group. Morphological changes were observed by a scanning electron microscope (SEM). The half-lethal condition from the previous experimental results was used to the IR combined with mercury. Yeast cells were exposed to 400 and 800 Gy at dose rates of 400Gy $hr^{-1}$ or 800 Gy $hr^{-1}$, respectively. Yeast cells were treated with 0.05 to 0.15 mM mercury chloride (II). Oxidative stress can damage cellular membranes through a lipidic peroxidation. This effect was detected in this work, after treatment of IR and mercury chloride (II). The cell morphology was modified more at high doses of IR and high concentrations of mercury chloride(II). IR and mercury chloride (II) were of the oxidative stress. Cell morphology was modified differently according to the way of oxidative stress treatment. Moreover, morphological changes in the cell membrane were more observable in the frequently stress treated cells than the temporarily stress treated cells.

항 바이러스 작용이 기대되는 Uridine의 2′,3′-Seco 유도체의 합성

  • 천문우;양재욱;이정원;송선용
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.222-222
    • /
    • 1994
  • 목적하는 화합물인 2',5'-dihydroxy-3'-무치환 유도체(1)는 uridine을 sodium metaperiodate로 산화하여 dialdehyde를 얻은다음 1,2-dianilinoethane으로 3'-aldehyde만을 선택적으로 보호, 2'-aldehyde를 NaBH$_4$로 환원, alcohol로 하여 deprotection 하므로서 hemiacetal율 얻는다. 이 hemiacetal을 TsSNHHNH$_2$로 처리하여 목적하는(1) 화합물을 얻었으며 2-azido-5-Hydroxy-3'-무치환 유도체(2)는 (1)화합물 합성시 얻은 hemiactal을 출발 물질로 하여 먼저 TBDPSCl로 silyaltion하여 5'-hydroxyl group을 보호하고 TsNHNH$_2$로 3'-위치를 hydrazone으로 한다음 NaB(CNH$_3$로 처리하여 얻은 hydrazide를 NaOAc를 반응시켜 2'-hydroxy-3'-무치환-5'-silyl 유도체를 얻고 또한 2',3'-dihydroxy group을 tosyl화, azido화, 5'-silyl group을 deprotection 하므로서 (2)를 얻었다. 또한 2',3'-dihydroxy-5'-무치환 유도체(4)는 uridine의 2',3'-위치를 먼저 protection, 5'-위치를 benzoyl화 2',3'-deprotection, periodate oxidation하여 얻은 diol을 silyl화 한 다음 5'-위치를 benzoyl화, 2',3'-deprotection, 산화하여 얻은 hemiacetal의 silyl group을 제거한후 primary hydroxyl group만을 선택적으로 silyl화, TsNHNH$_2$, NaB(CN)H$_3$ 및 NaOAc로 처리하므로서 얻은 2'-hydroxy-3'-0-silyl group-5'-무치환 화합물을 tosyl, azido화 한다음 desilylation하여 얻었다. 목적하는(1) 화합물의 diasteromer 인 2',3'-dihydroxy-5'-무치환 유도체(3)는 (4)화합물 합성시 얻은 hemiactal을 key intermediate로 하여 TsNHNH$_2$, NaB(CN)H$_3$ 및 NaOAc로 처리하므로서 얻을수 있었다. 이들 화합물들의 각종 DNA 및 RNA virus에 대한 항 바이러스작용을 검토한 결과 현저한 항 바이러스 작용을 나타내지 않았다.

  • PDF

Diphlorethohydroxycarmalol Suppresses Ultraviolet B-Induced Matrix Metalloproteinases via Inhibition of JNK and ERK Signaling in Human Keratinocytes

  • Piao, Mei Jing;Kumara, Madduma Hewage Susara Ruwan;Kim, Ki Cheon;Kang, Kyoung Ah;Kang, Hee Kyoung;Lee, Nam Ho;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.23 no.6
    • /
    • pp.557-563
    • /
    • 2015
  • Skin aging is the most readily observable process involved in human aging. Ultraviolet B (UVB) radiation causes photo-oxidation via generation of reactive oxygen species (ROS), thereby damaging the nucleus and cytoplasm of skin cells and ultimately leading to cell death. Recent studies have shown that high levels of solar UVB irradiation induce the synthesis of matrix metalloproteinases (MMPs) in skin fibroblasts, causing photo-aging and tumor progression. The MMP family is involved in the breakdown of extracellular matrix in normal physiological processes such as embryonic development, reproduction, and tissue remodeling, as well as in disease processes such as arthritis and metastasis. We investigated the effect of diphlorethohydroxycarmalol (DPHC) against damage induced by UVB radiation in human skin keratinocytes. In UVB-irradiated cells, DPHC significantly reduced expression of MMP mRNA and protein, as well as activation of MMPs. Furthermore, DPHC reduced phosphorylation of ERK and JNK, which act upstream of c-Fos and c-Jun, respectively; consequently, DPHC inhibited the expression of c-Fos and c-Jun, which are key components of activator protein-1 (AP-1, up-regulator of MMPs). Additionally, DPHC abolished the DNA-binding activity of AP-1, and thereby prevented AP-1-mediated transcriptional activation. These data demonstrate that by inactivating ERK and JNK, DPHC inhibits induction of MMPs triggered by UVB radiation.

Growth Promotion of Pepper Plants by Pantoea ananatis B1-9 and its Efficient Endophytic Colonization Capacity in Plant Tissues

  • Kim, Su-Nam;Cho, Won-Kyong;Kim, Won-Il;Jee, Hyeong-Jin;Park, Chang-Seuk
    • The Plant Pathology Journal
    • /
    • v.28 no.3
    • /
    • pp.270-281
    • /
    • 2012
  • The bacteria B1-9 that was isolated from the rhizosphere of the green onion could promote growth of pepper, cucumber, tomato, and melon plants. In particular, pepper yield after B1-9 treatment on the seedling was increased about 3 times higher than that of control plants in a field experiment. Partial 16S rDNA sequences revealed that B1-9 belongs to the genus Pantoea ananatis. Pathogenecity tests showed non-pathogenic on kimchi cabbage, carrot, and onion. The functional characterization study demonstrated B1-9's ability to function in phosphate solubilization, sulfur oxidation, nitrogen fixation, and indole-3-acetic acid production. To trace colonization patterns of B1-9 in pepper plant tissues, we used $DRAQ5^{TM}$ fluorescent dye, which stains the DNAs of bacteria and plant cells. A large number of B1-9 cells were found on the surfaces of roots and stems as well as in guard cells. Furthermore, several colonized B1-9 cells resided in inner cortical plant cells. Treatment of rhizosphere regions with strain B1-9 can result in efficient colonization of plants and promote plant growth from the seedling to mature plant stage. In summary, strain B1-9 can be successfully applied in the pepper plantation because of its high colonization capacity in plant tissues, as well as properties that promote efficient plant growth.