• 제목/요약/키워드: DNA molecules

검색결과 663건 처리시간 0.023초

Cyclic Voltammetric Investigation of Interactions between Bisnitroaromatic Compounds and ds.DNA

  • Janjua, Naveed Kausar;Akhter, Zareen;Jabeen, Fariya;Iftikhar, Bushra
    • 대한화학회지
    • /
    • 제58권2호
    • /
    • pp.153-159
    • /
    • 2014
  • Herein, the cyclic voltammetric (CV) investigations of structurally similar bisnitrocompounds (N3, N4, N5, N6, having different-$CH_2$-spacer length) is presented. CV study offered interesting interactional possibilities of bisnitrocompounds with chicken blood ds.DNA at physiological pH 4.7 and human body temperature, 310 K. The results indicated strong interaction by these symmetric molecules with ds.DNA and strength of binding is found to depend on length of $CH_2$ spacer group in their molecular structure. Thermodynamics derived from electrochemical binding parameters also favored the irreversible interactions. Moreover, threading intercalation mode of binding is suggested based on thermodynamic and kinetic binding parameters extracted from CV studies.

Cloning and Expression of a Farnesyl Diphosphate Synthase in Centella asiatica (L.) Urban

  • Kim, Ok Tae;Ahn, Jun Cheul;Hwang, Sung Jin;Hwang, Baik
    • Molecules and Cells
    • /
    • 제19권2호
    • /
    • pp.294-299
    • /
    • 2005
  • A cDNA encoding farnesyl diphosphate synthase (FPS; EC2.5.1.1/EC2.5.1.10) was isolated from Centella asiacita (L.) Urban, using degenerate primers based on two highly conserved domains. A full-length cDNA clone was subsequently isolated by rapid amplification of cDNA ends (RACE) PCR. The sequence of the CaFPS (C. asiatica farnesyl diphosphate synthase) cDNA contains an open reading frame of 1029 nucleotides encoding 343 amino acids with a molecular mass of 39.6 kDa. The deduced CaFPS amino acid sequence exhibits 84, 79, and 72%, identity to the FPSs of Artemisia annua, Arabidopsis thaliana, and Oryza sativa, respectively. Southern blot analysis suggested that the C. asiatica genome contains only one FPS gene. An artificially expressed soluble form of the CaFPS was identified by SDS-PAGE. It had high specific activity and produced farnesyl diphosphate as the major isoprenoid.

Phylogenetic Relationships Among Six Vetigastropod Subgroups (Mollusca, Gastropoda) Based on 18S rDNA Sequences

  • Yoon, Sook Hee;Kim, Won
    • Molecules and Cells
    • /
    • 제19권2호
    • /
    • pp.283-288
    • /
    • 2005
  • Complete 18S rDNA sequences were determined for 10 vetigastropods in order to investigate the phylogeny of Vetigastropoda, which is controversial. These sequences were analyzed together with published sequences for nine other vetigastropods and two nerites. With the two nerites as outgroups, the phylogeny was inferred by three analytical methods, neighbor-joining, maximum likelihood, and maximum parsimony. The 18S rDNA sequence data support the monophyly of four vetigastropod superfamilies, the Pleurotomarioidea, the Fissurelloidea, the Haliotoidea, and the Trochoidea. The present results yield the new branching order: (Pleurotomarioidea (Fissurelloidea ((Scissurelloidea, Lepetodriloidea) (Haliotoidea, Trochoidea)))) within the vetigastropod clade.

CRISPR and Target-Specific DNA Endonucleases for Efficient DNA Knock-in in Eukaryotic Genomes

  • Lee, Seung Hwan;Kim, Sunghyun;Hur, Junho K
    • Molecules and Cells
    • /
    • 제41권11호
    • /
    • pp.943-952
    • /
    • 2018
  • The discovery and mechanistic understanding of target-specific genome engineering technologies has led to extremely effective and specific genome editing in higher organisms. Target-specific genetic modification technology is expected to have a leading position in future gene therapy development, and has a ripple effect on various basic and applied studies. However, several problems remain and hinder efficient and specific editing of target genomic loci. The issues are particularly critical in precise targeted insertion of external DNA sequences into genomes. Here, we discuss some recent efforts to overcome such problems and present a perspective of future genome editing technologies.

PLP-1 Binds Nematode Double-stranded Telomeric DNA

  • Im, Seol Hee;Lee, Junho
    • Molecules and Cells
    • /
    • 제20권2호
    • /
    • pp.297-302
    • /
    • 2005
  • The integrity and proper functioning of telomeres require association of telomeric DNA sequences with specific binding proteins. We have characterized PLP-1, a $PUR{\alpha}$ homolog encoded by F45E4.2, which we previously identified as a candidate double stranded telomere binding protein, by affinity chromatography followed by mass spectrometry. PLP-1 bound double-stranded telomeric DNA in vitro as shown by competition assays. Core binding was provided by the third and fourth nucleotides of the TTAGGC telomeric repeat. This is quite different from the binding sequence of CEH-37, another C. elegans telomere binding protein, suggesting that multiple proteins may bind nematode telomeric DNA simultaneously in vivo.

광 바이오센서를 이용한 비표지 생계물질들의 특이 상호작용력의 측정 (Label-free Detection of Biomolecular Specific Interaction by Optical Biosensors)

  • 김의락;최정우
    • KSBB Journal
    • /
    • 제17권1호
    • /
    • pp.1-13
    • /
    • 2002
  • Label-free optical methods for the monitoring of interactions between biological molecules have become increasingly popular within the last decade. A rising number of publications have demonstrated the benefits of direct biomolecular interaction analysis(BIA) for biology and biochemistry, such as antigen-antibody Interactions, receptor-ligand interactions, protein-DNA, DNA- intercalator, and DNA-DNA interactions. This article gives an overview of the historical development, principle and application of label-free optical biosensor to examine the functional characteristics of biospecific interaction, such as kinetics, affinity, and binding position of biomolecular between an immobilized species at the transducer surface and its dissolved binding partner.

유전자 발현 조절과 DNA 3차원적 구조와의 관계 (Regulation of Gene Expression and 3-Dimensional Structure of DNA)

  • 김병동
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1987년도 식물생명공학 심포지움 논문집 Proceedings of Symposia on Plant Biotechnology
    • /
    • pp.149-155
    • /
    • 1987
  • Growth and development of a higher plant, or any living organism for that matter, could be defined as an orderly expression of the genome in time and space in close interaction with the environment. During differentiation and development of a tissue or organ a group of genes must be selectively turned on or turned off mainly by trans-acting regulators. In this general concept of regulation of regulation of gene expression, a DNA molecule is recognized at a specific nucleotide sequence by DNA-binding factors. Molecular biology of the regulatory factors such as hormones, and their receptors, target DNA sequences and DNA-binding proteins are well advanced. What is not clearly understood is the molecular basis of the interactions between DNA and binding factors, expecially of the usages of the dyad symmetry of the target DNA sequences and the dimeric nature of the DNA-binding proteins. A unique 3-dimensional structure of DNA has been proposed that may play an important role in the orderly expression of the gene. A foldback intercoil (FBI) DNA configuration which was originally found by electron microscopy among mtDNA molecules from pearl millet has some unique features. The FBI configuration of DNA is believed to be formed when a flexible double helix folds back and interwines in the widened major grooves resulting in a four stranded, intercoil DNA whose thickness is the same as that of double stranded DNA. More recently, the FBI structure of DNA has been also induced in vitro by a novel enzyme which was purified from pearl millet mitochondria. It has been proposed that the FBI DNA could be utillized in intramolecular recombination which leads to inversion or deletion, and in intermolecular recombination which can lead to either site-specific recombination, genetic recombination via single strand invasion, or cross strand recombination. The structure and function of DNA in 3-dimensional aspect is emphasized for better understanding orderly expression of genes during growth and development.

  • PDF

Chemical Genomics and Medicinal Systems Biology: Chemical Control of Genomic Networks in Human Systems Biology for Innovative Medicine

  • Kim, Tae-Kook
    • BMB Reports
    • /
    • 제37권1호
    • /
    • pp.53-58
    • /
    • 2004
  • With advances in determining the entire DNA sequence of the human genome, it is now critical to systematically identify the function of a number of genes in the human genome. These biological challenges, especially those in human diseases, should be addressed in human cells in which conventional (e.g. genetic) approaches have been extremely difficult to implement. To overcome this, several approaches have been initiated. This review will focus on the development of a novel 'chemical genetic/genomic approach' that uses small molecules to 'probe and identify' the function of genes in specific biological processes or pathways in human cells. Due to the close relationship of small molecules with drugs, these systematic and integrative studies will lead to the 'medicinal systems biology approach' which is critical to 'formulate and modulate' complex biological (disease) networks by small molecules (drugs) in human bio-systems.

Enhancement of Efficiency for Polymerase Chain Reaction Using Nanoparticle-Coated Graphene Oxide

  • 주민영;백승훈;김은주;;박찬영;박태정
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.375.1-375.1
    • /
    • 2016
  • Polymerase chain reaction (PCR) has revolutionized genetics and become one of the most popular techniques in modern biological and medical sciences. It can be used not only as an in vitro DNA amplification method but also used in many bioassay applications. The PCR can be used to exponentially produce a large number of DNA copies from a small quantity of DNA molecules in a few hours. However, as unwanted DNA fragments are also often manufactured, the amplification efficiency of PCR is decreased. To overcome this limitation, several nanomaterials have been employed to increase the specificity of the PCR reaction. Recently, graphene has attracted a great interest for its excellent electron transfer, thermal and biocompatibility. Especially, gold nanoparticle-coated graphene oxide (GO/AuNPs) led to enhance electron and thermal transfer rate and low-charge transfer resistance. Therefore, we report the development of a demonstration for the PCR efficiency using a large-scale production of the GO and combination of gold nanoparticles. Because a thermal conductivity is an important factor for improving the PCR efficiency in different DNA polymerases and different size samples. When PCR use GO/AuNPs, the result of transmission electron microscopy and real-time quantitative PCR (qPCR) showed an enhanced PCR efficiency. We have demonstrated that GO/AuNPs would be simply outperformed for enhancing the specificity and efficiency of DNA amplification procedure.

  • PDF

Fusarium속에서 PFGE를 이용한 Electrophoretic Karyotyping (Electrophoretic Karyotyping by PFGE in the Genus Fusarium)

  • 민병례;정진숙;최영길
    • 한국균학회지
    • /
    • 제26권2호통권85호
    • /
    • pp.135-143
    • /
    • 1998
  • CHEF (Contour-Clamped homogeneous electric field) gel electrophoresis를 이용하여 Fusarium section Sporotrichiella, Liseola, Gibbosum, Discolor와 Martiella에 속하는 10종의 electrophoretic karyotype을 비교하였다. Intact chromosomal DNA는 균류의 원형질체로부터 추출하였으며, 크기에 따라 다양한 조건을 주어 DNA 분자를 분리시켰다. Fusarium속에 속하는 종의 염색체는 0.78Mb에서 7.20Mb의 크기를 가진 염색체가 종에 따라 $5{\sim}13$개였다. 각 종의 total genome 크기는 18.32Mb에서 48.20Mb였다. Electrophoretic karyotype을 비교한 후 F. oxysporum formae speciales lilii로부터 무작위로 선택하여 만든 genomic DNA를 probe로 하여 Southern hybridization 분석을 수행하였다.

  • PDF