• Title/Summary/Keyword: DNA microarray

Search Result 696, Processing Time 0.026 seconds

DNA Microarray Probe Preparation by Gel Isolation Nested PCR

  • Wang, Hong-Min;Ma, Wen-li;Huang, Hai;Xiao, Wei-Wei;Wang, Yan;Zheng, Wen-Ling
    • BMB Reports
    • /
    • v.37 no.3
    • /
    • pp.356-361
    • /
    • 2004
  • To develop a simplified method that can rapidly prepare DNA microarray probes in a massive scale, a lambda phage genomic DNA-fragments library was constructed for the microarray-probes collection. Four methods of DNA band recovery from the first PCR products were tested and compared. The DNA microarray probes were collected by a novel method of nested PCR that was mediated by gel isolation of the first PCR products. This method was named GIN-PCR. The probes that were prepared by this GIN-PCR technique were used as subjects to fabricate a DNA microarray. The results showed that a wooden toothpick was superior to the other 3 methods, since this technique can steadily transfer the DNA bands as the template of the second PCR after the first PCR. A group of probes were successfully collected and DNA microarrays were constructed using these probes. Hybridization results demonstrated that this technique of DNA recovery and probe preparation was rapid, efficient, and effective. We developed a cost-effective and less labor-intensive method for DNA microarray probe preparation by nested PCR that is mediated by wooden toothpick transfer of the DNA bands in the gel after electrophoresis.

Evaluation of Amplified-based Target Preparation Strategies for Toxicogenomics Study : cDNA versus cRNA

  • Nam, Suk-Woo;Lee, Jung-Young
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.2
    • /
    • pp.92-98
    • /
    • 2005
  • DNA microarray analysis of gene expression in toxicogenomics typically requires relatively large amounts of total RNA. This limits the use of DNA microarray when the sample available is small. To confront this limitation, different methods of linear RNA amplification that generate antisense RNA (aRNA) have been optimized for microarray use. The target preparation strategy using amplified RNA in DNA microarray protocol can be divided into direct-incorporation labeling which resulted in cDNA targets (Cy-dye labeled cDNA from aRNA) and indirect-labeling which resulted in cRNA targets (i.e. Cy-dye labeled aRNA), respectively. However, despite the common use of amplified targets (cDNA or cRNA) from aRNAs, no systemic assessment for the use of amplified targets and bias in terms of hybridization performance has been reported. In this investigation, we have compared the hybridization performance of cRNA targets with cDNA targets from aRNA on a 10 K cDNA microarrays. Under optimized hybridization conditions, we found that 43% of outliers from cDNA technique and 86% from the outlier genes were reproducibly detected by both targets hybridization onto cDNA microarray. This suggests that the cRNA labeling method may have a reduced capacity for detecting the differential gene expression when compared to the cDNA target preparation. However, further validation of this discordant result should be pursued to determine which techniques possesses better accuracy in identifying truly differential genes.

Fabrication of Hydrophobic/Hydrophilic Pattern as a Template for DNA Chip Microaray (DNA Chip Microarrays를 위한 template로서 소수성 패턴의 제작)

  • Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.472-475
    • /
    • 2004
  • Microarray-based DNA chips provide an architecture for multi-analyte sensing. In this paper, we report a new approach for DNA chip microarray fabrication. Multifunctional DNA chip microarray was made by immobilizing many kinds of biomaterials on transducers (particles). DNA chip microarray was prepared by randomly distributing a mixture of the particles on a chip pattern containing thousands of m-scale sites. The particles occupied a different sites from site to site. The particles were arranged on the chip pattern by the random fluidic self-assembly (RFSA) method, using a hydrophobic interaction for assembly.

  • PDF

Probe Selection of DNA Microarrays Using Genetic Algorithms (유전 알고리즘을 이용한 DNA Microarray의 Probe 선택)

  • Kim, Sun;Zhang, Byoung-Tak
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.183-187
    • /
    • 2002
  • DNA microarray는 분자생물학 및 DNA 컴퓨팅 분야에 널리 사용되고 있는 실험 도구이다. DNA microarray를 이용하는 한 예는 알려진 유전자 집합을 바탕으로 하여 hybridization을 통해 새로운 DNA 서열을 분석하는 것이다. 이를 위한 가장 간단한 방법은 알려진 유전자의 모든 서열을 DNA microarray 상에 올려놓는 것이지만 이는 결과의 정확도 및 칩 제작비용 면에서 비효율적이다. 따라서 일반적으로는 유전자 서열 정보를 파악한 후 일련의 DNA 서열을 선택하는 probe 디자인 과정을 거친다. 그러나 현재 유전자 서열을 바탕으로 최적의 probe 집합을 찾는 결정적인 방법이 존재하고 있지 않다. 이에 본 논문은 oligo DNA microarray을 이용한 DNA 서열 분석 문제에 있어서 가능한 많은 유전자를 인식하면서 최소의 probe 개수를 갖는 집합을 찾는 방법을 제안한다. 제시된 방법은 가능한 probe 집합들로 해집합을 구성한 후, 유전알고리즘을 이용한 진화 과정을 통해 목적하는 probe 집합을 찾는다. 본 논문에서는 GenBank로부터 얻은 일련의 유전자 집합을 대상으로 실험하였으며 그 결과를 분석하였다.

  • PDF

Network-based Microarray Data Analysis Tool

  • Park, Hee-Chang;Ryu, Ki-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.1
    • /
    • pp.53-62
    • /
    • 2006
  • DNA microarray data analysis is a new technology to investigate the expression levels of thousands of genes simultaneously. Since DNA microarray data structures are various and complicative, the data are generally stored in databases for approaching to and controlling the data effectively. But we have some difficulties to analyze and control the data when the data are stored in the several database management systems or that the data are stored to the file format. The existing analysis tools for DNA microarray data have many difficult problems by complicated instructions, and dependency on data types and operating system. In this paper, we design and implement network-based analysis tool for obtaining to useful information from DNA microarray data. When we use this tool, we can analyze effectively DNA microarray data without special knowledge and education for data types and analytical methods.

  • PDF

Development of DNA Chip Microarray Using Hydrophobic Template (소수성 Template를 이용한 DNA Chip Microarray의 개발)

  • Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.271-274
    • /
    • 2004
  • Microarray-based DNA chips provide an architecture for multi-analyte sensing. In this paper, we report a new approach for DNA chip microarray fabrication. Multifunctional DNA chip microarray was made by immobilizing many kinds of biomaterials on transducers (particles). DNA chip microarray was prepared by randomly distributing a mixture of the particles on a chip pattern containing thousands of m-scale sites. The particles occupied a different sites from site to site. The particles were arranged on the chip pattern by the random fluidic self-assembly (RFSA) method, using a hydrophobic interaction for assembly.

  • PDF

DNA Microarray Analysis of Gene Expression in Antifungal Bacterium of Bacillus lentimorbus WJ5 (DNA microarray를 이용한 항진균 활성세균 Bacillus lentimorbus WJ5의 유전자 발현 분석)

  • 이영근;김재성;장유신;조규성;장화형
    • Korean Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.141-147
    • /
    • 2003
  • The simultaneous expression levels of antifungal activity related genes was analyzed by DNA microarray. We constructed DNA chips contained 2,000 randomly digested genome spots of the antifungal bacterium of Bacillus lentimorbus WJ5 and compared its quantitative aspect with 7 antifungal activity deficient mutants induced by gamma radiation ($^{60}Co$). From the analysis of microarray hybridization by the Gene Cluster (Michael Eisen, Stanford Univ.), totally 408 genes were expressed and 20 genes among them were significantly suppressed in mutants. pbuX (xanthine permease, K222), ywbA (phosphotransferase system enzyme II, K393), ptsG (PTS glucose specific enzyme II ABC component, K877), yufO (ABC transporter (ATP-binding protein), K130l), and ftsY (signal recognition particle (docking protein), K868) were simultaneously down-regulated in all mutants. It suggested that they were supposed to be related to the antifungal activity of B. lentimorbus WJ5.

Large-Circular Single-stranded Sense and Antisense DNA for Identification of Cancer-Related Genes (장환형 단일가닥 DNA를 이용한 암세포 성장 억제 유전자 발굴)

  • Bae, Yun-Ui;Moon, Ik-Jae;Seu, Young-Bae;Doh, Kyung-Oh
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.1
    • /
    • pp.70-76
    • /
    • 2010
  • The single-stranded large circular (LC)-sense DNA were utilized as probes for DNA chip experiments. The microarray experiment using LC-sense DNA probes found differentially expressed genes in A549 cells as compared to WI38VA13 cells, and microarray data were well-correlated with data acquired from quantitative real-time RT-PCR. A 5K LC-sense DNA microarray was prepared, and the repeated experiments and dye swap test showed consistent expression patterns. Subsequent functional analysis using LC-antisense library of overexpressed genes identified several genes involved in A549 cell growth. These experiments demonstrated proper feature of LC-sense molecules as probe DNA for microarray and the potential utility of the combination of LC-sense microarray and antisense libraries for an effective functional validation of genes.

A Study of a Biological Information Processing for DNA Microarray Expression Data (DNA Microarray 발현정보에 대한 생물학적 정보처리에 관한 연구)

  • Jo, Yeong-Im;Jeong, Hyeon-Cheol
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.149-152
    • /
    • 2007
  • 본 논문은 바이오 인포메틱스의 분야를 간단히 소개하고 기능유전체학에서 microarray 실험에 대한 통계적 방법론을 살펴보고자 한다. 또한 DNA chip 설계와 생물학적 특정에 대해 살펴보고 각 분야에서 적용되는 통계적 방법을 연구분석 해보고자 한다.

  • PDF

Genes expression monitoring using cDNA microarray: Protocol and Application

  • Muramatsu Masa-aki
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2000.11a
    • /
    • pp.31-41
    • /
    • 2000
  • The major issue in the post genome sequencing era is determination of gene expression patterns in variety of biological systems. A microarray system is a powerful technology for analyzing the expression profile of thousands of genes at one experiment. In this study, we constructed cDNA microarray which carries 2,304 cDNAS derived from oligo-capped mouse cDNA library. Using this hand-made microarray we determined gene expression in various biological systems. To determine tissue specific genes, we compared Nine genes were highly-expressed in adult mouse brain compared to kidney, liver, and skeletal muscle. Tissue distribution analysis using DNA microarray extracted 9 genes that were predominantly expressed in the brain. A database search showed that five of the 9 genes, MBP, SC1, HiAT3, S100 protein-beta, and SNAP25, were previously known to be expressed at high level in the brain and in the nervous system. One gene was highly sequence similar to rat S-Rex-s/human NSP-C, suggesting that the gene is a mouse homologue. The remaining three genes did not match to known genes in the GenBank/EMBL database, indicating that these are novel genes highly-expressed in the brain. Our DNA microarray was also used to detect differentiation specific genes, hormone dependent genes, and transcription-factor-induced genes. We conclude that DNA microarray is an excellent tool for identifying differentially expressed genes.

  • PDF