• Title/Summary/Keyword: DNA metabarcoding

Search Result 19, Processing Time 0.022 seconds

Possibility in identifying species composition of fish communities using the environmental DNA metabarcoding technique - with the preliminary results at urban ecological streams (환경DNA 메타바코딩 기술을 활용한 수생태계 어류종 군집조사의 가능성 - 도시 생태하천 초기분석 자료를 중심으로)

  • Song, Young-Keun;Kim, Jong-Hee;Won, Su-Yeon;Park, Chan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.6
    • /
    • pp.125-138
    • /
    • 2019
  • This study aims to highlight the possibility in identifying species composition of fish communities using the environmental DNA (eDNA) metabarcoding technique, from both of the technical introduction and the pilot test at urban ecological streams. This new emerging survey technique using eDNA is getting popular in the world as a compensating way for the conventional field survey. However, the application to the domestic cases has yet to be studied. We attempted to use this technique for identifying fish species observed at four survey points in Hwangguji-chon, Suwon City. As a result, the detected number of species by eDNA sampled once in May was significantly matched with the total number of observed species in annual field surveys. Additionally eDNA results indicated the presence possibility of the unobserved species in field last year, even though the validation may be required. This survey technique seems to be more efficient and applicable to diverse situations of the fields and species, thereby needs to be studied further. We discussed the pros and cons of the application and summarized the research directions in future.

Diet analysis of Clithon retropictum in south coast of Korea using metabarcoding

  • SoonWon Hwang;Kwangjin Cho;Donguk Han;Yonghae Back;Eunjeong Lee;Sangkyu Park
    • Journal of Ecology and Environment
    • /
    • v.48 no.2
    • /
    • pp.144-151
    • /
    • 2024
  • Background: This study focused on the diet of Clithon retropictum, level II endangered species in Korea. Since the development of brackish water zones has led to a decline in the population of this species, to obtain information on the ecology of C. retropictum required for its conservation and restoration. To investigate the actual preys of C. retropictum in south coast of Korea, we conducted high-throughput sequencing and metabarcoding techniques to extract DNA from gut contents and periphyton in their habitats. Results: Total 118 taxonomic groups were detected from periphyton samples. 116 were Chromista and Cyanobacteria dominated in the most samples. In gut contents samples, 98 taxonomic groups were detected. Similar to the results of periphyton, 96 were Chromista and Cyanobacteria dominated in the most samples. In the principal component analysis based on the presence/absence of taxonomic groups, gut content composition showed more clustered patterns corresponding to their habitats. Bryophyta was the most crucial taxonomic group explaining the difference between periphyton and gut contents compositions of C. retropictum. Conclusions: Our finding suggests that C. retropictum may not randomly consume epilithic algae but instead, likely to supplement their diet with Bryophyta.

Review and Suggestions for Applying DNA Sequencing to Zooplankton Researches: from Taxonomic Approaches to Biological Interaction Analysis (동물플랑크톤 연구에 있어 DNA 분석 기법의 활용 방법과 과제: 개체 동정에서 군집 분석, 생물학적 상호작용 분석까지)

  • Oh, Hye-Ji;Chae, Yeon-Ji;Choi, Yerim;Ku, Doyeong;Heo, Yu-Ji;Kwak, Ihn-Sil;Jo, Hyunbin;Park, Young-Seuk;Chang, Kwang-Hyeon;Kim, Hyun-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.3
    • /
    • pp.156-169
    • /
    • 2021
  • Traditional morphological identification difficulties, such as phenotypic plasticity, misidentification of cryptic species, and larval stage species, can be compensated for by using DNA analysis techniques, such as DNA barcoding, in surveying zooplankton populations, including species identification. Recently, the rapid development of DNA sequencing techniques has allowed DNA-based community analysis not only for zooplankton assemblages in various aquatic ecosystems but also for the gut contents of zooplankton that are limited by conventional methods such as visual and microscopic identification. Therefore, the application of DNA sequencing can help understand biological interactions through the analysis of zooplankton food sources. The present paper introduces the major DNA-based approaches in zooplankton research topics, including taxonomic approaches by DNA barcoding, community-level approaches by metabarcoding, and gut content analyses, summarizes the analysis methods, and finally suggests the methodological topics that need to be considered for future applications.

Review and application of environmental DNA (eDNA) investigation of terrestrial species in urban ecosystem (도시 내 육상 생물종 모니터링을 위한 환경DNA 리뷰 및 적용)

  • Kim, Whee-Moon;Kim, Seoung-Yeal;Park, Il-Su;Lee, Hyun-Jung;Kim, Kyeong-Tae;Kim, Young;Kim, Hye-Joung;Kwak, Min-Ho;Lim, Tae-Yang;Park, Chan;Song, Won-Kyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.2
    • /
    • pp.69-89
    • /
    • 2020
  • Scientific trust and quantification of traditional species investigation and results that have been used in ecology for decades has always been a problem and concern for ecologists. Global ecologists have proposed DNA-based species investigation studies to find answers to problems. In this study, we reviewed the global trend of research on environmental DNA(eDNA), which is a method for monitoring species by detecting DNA of organisms naturally mixed in environmental samples such as water, soil, and feces. The first eDNA research confirmed the possibility of species investigation at the molecular level, and commercialization of NGS(Next Generation Sequencing) and DNA metabarcoding elicits efficient and quantitative species investigation results, and eDNA research is increasing in the filed of ecology. In this study, mammals and birds were detected using MiMammal universal primers from 23 samples(3 natural reserves; 20 water bowls) out of 4 patches to verify eDNA for urban ecosystems in Suwon, and eDNA was verified by performing camera trapping and field survey. Most terrestrial species were detected through eDNA, and particularly, mice(Mus musculus), and Vinous-throated Parrotbill (Sinosuthora webbiana) were identified only with eDNA, It has been confirmed to be highly effective by investigating techniques for small and internal species. However, due to the lack of resolution of the primer, weasels(Mustela sibirica) and squirrels(Melanochromis auratus) were not detected, and it was confirmed that the traditional investigation method was effective only for a few species, such as Mogera robusta(Mogera robusta). Therefore, it is judged that the effects of species investigation can be maximized only when eDNA is combined with traditional field survey and Camera trapping to complement each other.

Detection of frog and aquatic insects by environmental DNA in paddy water ecology

  • Keonhee Kim;Sera Kwon;Alongsaemi Noh
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.2
    • /
    • pp.257-270
    • /
    • 2023
  • The paddy environment is classified as a wetland and occupies a very large proportion of the freshwater environment. It is also ecologically important as a habitat and spawning ground for many aquatic insects and amphibian larvae. However, due to climate change and indiscriminate spraying of pesticides, the rice field ecosystem is continuously threatened. In order to restore ecologically damaged rice paddies in the future, information on organisms living in the rice paddy ecosystem, which can serve as a restoration standard, is needed. The eDNA metabarcoding analysis method is a very effective means of accumulating information on many organisms living in the rice field ecosystem because it can indirectly identify the existence of taxa that are no longer found in the target ecosystem due to different adult life periods or metamorphosis. In this study, genes of four species of frogs and nine species of aquatic insects were also discovered, and some taxa were directly discovered in the field. A large number of taxa have been discovered only by DNA searches, and traditional survey methods have only been able to identify very limited taxa. This eDNA-based paddy field biosearch is expected to be very useful in the investigation of biodiversity in agricultural ecosystems due to its strong analytical resolution.

Survey of Antibiotic Resistant Bacteria in Ulleungdo, Korea (울릉도의 항생제 내성균 조사)

  • Jun Hyung Lee;Hye Won Hong;Dukki Han
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.4
    • /
    • pp.344-354
    • /
    • 2022
  • BACKGROUND: Although antibiotics have contributed to treatment of bacterial infection, the antibiotic abuse can lead to antibiotic resistant bacteria. Impact of human activities on distribution of antibiotic resistance has been intensively issued and occurrence of antibiotic resistant bacteria in contaminated environments would not be a surprise. Nonetheless, anthropogenic contamination with the dissemination of antibiotic resistance along uncontaminated environments has been less considered. The aim of this study is to investigate antibiotic resistant bacteria across Ulleungdo, known as antibiotic resistance free and anthropogenic pollution free environment in Rep. of Korea. METHODS AND RESULTS: Antibiotic resistant bacteria in coastal seawater of Ulleungdo were investigated in July 2021. Antibiotic susceptibility test using the disk diffusion method was applied with six drugs according to the Clinical and Laboratory Standards Institute (CLSI) guideline. Total 43 bacterial isolates were tested and 20 isolates among of them showed multidrug resistance. Particularly, the number and ratio of resistant bacteria were relatively high in a densely populated area of Ulleungdo. The bacterial communities were investigated using 16S rRNA gene metabarcoding approach in the coastal seawater and soils of Ulleungdo. In the bacterial communities, Firmicutes were selectively distributed only in seawater, suggesting the possibility of anthropogenic contamination in coastal seawater of Ulleungdo. CONCLUSION(S): We found antibiotic resistant bacteria in a populated area of Ulleungdo. The occurrence of antibiotic resistant bacteria in Ulleungdo seems to result from the recent anthropogenic impact. Consistent monitoring of antibiotic resistant bacteria in the uncontaminated environment needs to considered for future risk assessment of antibiotics.

Application and Utilization of Environmental DNA Technology for Biodiversity in Water Ecosystems (수생태계 생물다양성 연구를 위한 환경유전자(environmental DNA) 기술의 적용과 활용)

  • Kwak, Ihn-Sil;Park, Young-Seuk;Chang, Kwang-Hyeon
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.3
    • /
    • pp.151-155
    • /
    • 2021
  • The application of environmental DNA in the domestic ecosystem is also accelerating, but the processing and analysis of the produced data is limited, and doubts are raised about the reliability of the analyzed and produced biological taxa identification data, and the sample medium (target sample, water, air, sediment, Gastric contents, feces, etc.) and quantification and improvement of analysis methods are also needed. Therefore, in order to secure the reliability and accuracy of biodiversity research using the environmental DNA of the domestic ecosystem, it is a process of actively using the database accumulated through ecological taxonomy and undergoing verification procedures, and experts verifying the resolution of the data increased by gene sequence analysis. This is absolutely necessary. Environmental DNA research cannot be solved only by applying molecular biology technology, and interdisciplinary research cooperation such as ecology-taxa identification-genetics-informatics is important to secure the reliability of the produced data, and researchers dealing with various media can approach it together. It is an area in desperate need of an information sharing platform that can do this, and the speed of development will proceed rapidly, and the accumulated data is expected to grow as big data within a few years.

Comparative Microbiome Analysis of Three Species of Laboratory-Reared Periplaneta Cockroaches

  • Lee, Seogwon;Kim, Ju Yeong;Yi, Myung-hee;Lee, In-Yong;Lee, Won-Ja;Moon, Hye Su;Yong, Dongeun;Yong, Tai-Soon
    • Parasites, Hosts and Diseases
    • /
    • v.58 no.5
    • /
    • pp.537-542
    • /
    • 2020
  • Cockroaches inhabit various habitats, which will influence their microbiome. Although the microbiome can be influenced by the diet and environmental factors, it can also differ between species. Therefore, we conducted 16S rDNA-targeted high-throughput sequencing to evaluate the overall bacterial composition of the microbiomes of 3 cockroach species, Periplaneta americana, P. japonica, and P. fuliginosa, raised in laboratory for several generations under the same conditions. The experiments were conducted using male adult cockroaches. The number of operational taxonomic units (OTUs) was not significantly different among the 3 species. With regard to the Shannon and Pielou indexes, higher microbiome values were noted in P. americana than in P. japonica and P. fuliginosa. Microbiome composition was also evaluated, with endosymbionts accounting for over half of all OTUs in P. japonica and P. fuliginosa. Beta diversity analysis further showed that P. japonica and P. fuliginosa had similar microbiome composition, which differed from that of P. americana. However, we also identified that P. japonica and P. fuliginosa host distinct OTUs. Thus, although microbiome compositions may vary based on multiple conditions, it is possible to identify distinct microbiome compositions among different Periplaneta cockroach species, even when the individuals are reared under the same conditions.