DOI QR코드

DOI QR Code

Review and Suggestions for Applying DNA Sequencing to Zooplankton Researches: from Taxonomic Approaches to Biological Interaction Analysis

동물플랑크톤 연구에 있어 DNA 분석 기법의 활용 방법과 과제: 개체 동정에서 군집 분석, 생물학적 상호작용 분석까지

  • Oh, Hye-Ji (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Chae, Yeon-Ji (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Choi, Yerim (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Ku, Doyeong (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Heo, Yu-Ji (Department of Environmental Education, Sunchon National University) ;
  • Kwak, Ihn-Sil (Fisheries Science Institute, Chonnam National University) ;
  • Jo, Hyunbin (Institute for Environment and Energy, Pusan National University) ;
  • Park, Young-Seuk (Department of Biology, Kyung Hee University) ;
  • Chang, Kwang-Hyeon (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Kim, Hyun-Woo (Department of Environmental Education, Sunchon National University)
  • 오혜지 (경희대학교 환경학및환경공학과) ;
  • 채연지 (경희대학교 환경학및환경공학과) ;
  • 최예림 (경희대학교 환경학및환경공학과) ;
  • 구도영 (경희대학교 환경학및환경공학과) ;
  • 허유지 (순천대학교 환경교육과) ;
  • 곽인실 (전남대학교 수산과학연구소) ;
  • 조현빈 (부산대학교 환경.에너지연구소) ;
  • 박영석 (경희대학교 생물학과) ;
  • 장광현 (경희대학교 환경학및환경공학과) ;
  • 김현우 (순천대학교 환경교육과)
  • Received : 2021.09.15
  • Accepted : 2021.09.23
  • Published : 2021.09.30

Abstract

Traditional morphological identification difficulties, such as phenotypic plasticity, misidentification of cryptic species, and larval stage species, can be compensated for by using DNA analysis techniques, such as DNA barcoding, in surveying zooplankton populations, including species identification. Recently, the rapid development of DNA sequencing techniques has allowed DNA-based community analysis not only for zooplankton assemblages in various aquatic ecosystems but also for the gut contents of zooplankton that are limited by conventional methods such as visual and microscopic identification. Therefore, the application of DNA sequencing can help understand biological interactions through the analysis of zooplankton food sources. The present paper introduces the major DNA-based approaches in zooplankton research topics, including taxonomic approaches by DNA barcoding, community-level approaches by metabarcoding, and gut content analyses, summarizes the analysis methods, and finally suggests the methodological topics that need to be considered for future applications.

동물플랑크톤 군집 연구에 DNA 바코딩과 같은 DNA 분석 기법의 적용은 분류형태학을 기반으로 하는 전통적인 종동정 시 발생할 수 있는 문제(e.g. 개체의 표현형 가소성에 의한 오동정, 유사종 및 자매종, 유생 시기의 종 동정의 어려움)를 보완할 수 있다. 최근 DNA 시퀀싱 기술의 발전으로 다양한 수생태계의 동물플랑크톤 군집은 물론, 육안 및 현미경을 통해 구분하는 데 한계가 있는 동물플랑크톤의 위 내용물에 대한 DNA 기반 군집 분석 또한 가능하게 되었으며, 이는 동물플랑크톤의 섭식 먹이원 분석을 통한 생물학적 상호작용을 이해를 돕는다. 본 논문은 동물플랑크톤 연구에 DNA 분석 기법이 활용된 사례(e.g. DNA 바코딩을 이용한 계통분류학적 연구, 메타바코딩을 이용한 군집 분석, 위 내용물 분석)를 소개하고 분석 방법을 요약하여, 최종적으로 향후 이를 활용하고자 하는 연구자들에게 연구 접근성을 높일 수 있도록 방법론적인 기초 지식을 제공하고자 하였다.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원 수생태계 건강성 확보 기술개발사업의 지원을 받아 연구되었습니다(과제번호: 2020003050003).

References

  1. Abad, D., A. Albaina, M. Aguirre, A. Laza-Martinez, I. Uriarte, A. Iriarte, F. Villate and A. Estonba. 2016. Is metabarcoding suitable for estuarine plankton monitoring? A comparative study with microscopy. Marine Biology 163(7): 1-13. https://doi.org/10.1007/s00227-015-2782-x
  2. Baek, S.Y., K.H. Jang, E.H. Choi, S.H. Ryu, S.K. Kim, J.H. Lee, Y.J. Lim, J. Lee, J. Jun, M. Kwak, Y.S. Lee, J.S. Hwang, B.A. Venmathi Maran, C.Y. Chang, I.H. Kim and U.W. Hwang. 2016. DNA barcoding of metazoan zooplankton copepods from South Korea. PloS One 11(7): e0157307. https://doi.org/10.1371/journal.pone.0157307
  3. Banerji, A., M. Bagley, M. Elk, E. Pilgrim, J. Martinson and J. Santo Domingo. 2018. Spatial and temporal dynamics of a freshwater eukaryotic plankton community revealed via 18S rRNA gene metabarcoding. Hydrobiologia 818(1): 71-86. https://doi.org/10.1007/s10750-018-3593-0
  4. Belyaeva, M. and D.J. Taylor. 2009. Cryptic species within the Chydorus sphaericus species complex (Crustacea: Cladocera) revealed by molecular markers and sexual stage morphology. Molecular Phylogenetics and Evolution 50(3): 534-546. https://doi.org/10.1016/j.ympev.2008.11.007
  5. Bhavan, P.S., R. Udayasuriyan, C. Vadivalagan, R. Kalpana and S. Umamaheswari. 2016. Diversity of zooplankton in four perennial lakes of Coimbatore (India) and molecular characterization of Asplanchna intermedia, Moina micrura, Mesocyclops edax and Cypris protubera through mt-COI gene. Journal of Entomology and Zoology Studies 4(2): 183-197.
  6. Blanco-Bercial, L., A. Cornils, N. Copley and A. Bucklin. 2014. DNA barcoding of marine copepods: assessment of analytical approaches to species identification. PLoS Currents 6: ecurrents.tol.cdf8b74881f87e3b01d56b43791626d2.
  7. Briski, E., M.E. Cristescu, S.A. Bailey and H.J. MacIsaac. 2011. Use of DNA barcoding to detect invertebrate invasive species from diapausing eggs. Biological Invasions 13(6): 1325-1340. https://doi.org/10.1007/s10530-010-9892-7
  8. Bryant, P.J. and T. Arehart. 2021. Diversity and life-cycle analysis of Pacific Ocean zooplankton by videomicroscopy and DNA barcoding: Crustacea.
  9. Bucklin, A. 2000. Methods for population genetic analysis of zooplankton, pp. 533-570. In: ICES zooplankton methodology manual. Academic Press.
  10. Bucklin, A., R.R. Hopcroft, K.N. Kosobokova, L.M. Nigro, B.D. Ortman, R.M. Jennings and C.J. Sweetman. 2010a. DNA barcoding of Arctic Ocean holozooplankton for species identification and recognition. Deep Sea Research Part II: Topical Studies in Oceanography 57(1-2): 40-48. https://doi.org/10.1016/j.dsr2.2009.08.005
  11. Bucklin, A., B.D. Ortman, R.M. Jennings, L.M. Nigro, C.J. Sweetman, N.J. Copley, T. Sutton and P.H. Wiebe. 2010b. A "Rosetta Stone" for metazoan zooplankton: DNA barcode analysis of species diversity of the Sargasso Sea (Northwest Atlantic Ocean). Deep Sea Research Part II: Topical Studies in Oceanography 57(24-26): 2234-2247. https://doi.org/10.1016/j.dsr2.2010.09.025
  12. Bucklin, A., P.K. Lindeque, N. Rodriguez-Ezpeleta, A. Albaina and M. Lehtiniemi. 2016. Metabarcoding of marine zooplankton: prospects, progress and pitfalls. Journal of Plankton Research 38(3): 393-400. https://doi.org/10.1093/plankt/fbw023
  13. Bucklin, A., H.D. Yeh, J.M. Questel, D.E. Richardson, B. Reese, N.J. Copley and P.H. Wiebe. 2019. Time-series metabarcoding analysis of zooplankton diversity of the NW Atlantic continental shelf. ICES Journal of Marine Science 76(4): 1162-1176. https://doi.org/10.1093/icesjms/fsz021
  14. Carreon-Martinez, L., T.B. Johnson, S.A. Ludsin and D.D. Heath. 2011. Utilization of stomach content DNA to determine diet diversity in piscivorous fishes. Journal of Fish Biology 78: 1170-1182. https://doi.org/10.1111/j.1095-8649.2011.02925.x
  15. Chae, Y.J., H.J. Oh, K.H. Chang, I.S. Kwak and H. Jo. 2021. Application of Next-Generation Sequencing for the Determination of the Bacterial Community in the Gut Contents of Brackish Copepod Species (Acartia hudsonica, Sinocalanus tenellus, and Pseudodiaptomus inopinus). Animals 11(2): 542. https://doi.org/10.3390/ani11020542
  16. Chain, F.J., E.A. Brown, H.J. MacIsaac and M.E. Cristescu. 2016. Metabarcoding reveals strong spatial structure and temporal turnover of zooplankton communities among marine and freshwater ports. Diversity and Distributions 22(5): 493-504. https://doi.org/10.1111/ddi.12427
  17. Conde-Porcuna, J.M., J. Veiga, E. Moreno, L. Jimenez, E. Ramos-Rodriguez and C. Perez-Martinez. 2021. Spatiotemporal genetic structure in the Daphnia pulex complex from Sierra Nevada lakes(Spain): reproductive mode and first record of North American D. cf. pulex in European alpine lakes. Journal of Plankton Research 43(3): 380-395. https://doi.org/10.1093/plankt/fbab024
  18. Craig, C., W.J. Kimmerer and C.S Cohen. 2013. A DNA-based method for investigating feeding by copepod nauplii. Journal of Plankton Research 36: 271-275. https://doi.org/10.1093/plankt/fbt104
  19. DeSalle, R. and P. Goldstein. 2019. Review and interpretation of trends in DNA barcoding. Frontiers in Ecology and Evolution 7: 302. https://doi.org/10.3389/fevo.2019.00302
  20. Djurhuus, A., K. Pitz, N.A. Sawaya, J. Rojas-Marquez, B. Michaud, E. Montes, F. Muller-Karger and M. Breitbart. 2018. Evaluation of marine zooplankton community structure through environmental DNA metabarcoding. Limnology and Oceanography: Methods 16(4): 209-221. https://doi.org/10.1002/lom3.10237
  21. Duggan, I.C., K.V. Robinson, C.W. Burns, J.C. Banks and I.D. Hogg. 2012. Identifying invertebrate invasions using morphological and molecular analyses: North American Daphnia 'pulex' in New Zealand fresh waters. Aquatic Invasions 7(4): 585-590. https://doi.org/10.3391/ai.2012.7.4.015
  22. Elias-Gutierrez, M., F.M. Jeronimo, N.V. Ivanova, M. Valdez-Moreno and P.D. Hebert. 2008. DNA barcodes for Cladocera and Copepoda from Mexico and Guatemala, highlights and new discoveries. Zootaxa 1839(1): 1-42. https://doi.org/10.11646/zootaxa.1839.1.1
  23. Elias-Gutierrez, M. and M. Valdez-Moreno. 2008. A new cryptic species of Leberis Smirnov, 1989 (Crustacea, Cladocera, Chydoridae) from the Mexican semi-desert region, highlighted by DNA barcoding. Hidrobiologica 18(1): 63-74.
  24. Elias Gutierrez, M., M. Valdez-Moreno, J. Topan, M.R. Young and J.A. Cohuo-Colli. 2018. Improved protocols to accelerate the assembly of DNA barcode reference libraries for freshwater zooplankton. Ecology and Evolution 8(5): 3002-3018. https://doi.org/10.1002/ece3.3742
  25. Folmer, O., M. Black, W. Hoeh, R. Lutz and R. Vrijenhoek. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294-299.
  26. Fonseca, V.G., G.R. Carvalho, W. Sung, H.F. Johnson, D.M. Power, S.P. Neill, M. Packer, M.L. Blaxter, P.J.D. Lambshead, W.K. Thomas and S. Creer. 2010. Second-generation environmental sequencing unmasks marine metazoan biodiversity. Nature Communications 1(1): 1-8.
  27. Garcia-Morales, A.E. and M. Elias Gutierrez. 2013. DNA barcoding of freshwater Rotifera in Mexico: Evidence of cryptic speciation in common rotifers. Molecular Ecology Resources 13(6): 1097-1107. https://doi.org/10.1111/1755-0998.12080
  28. Geller, J., C. Meyer, M. Parker and H. Hawk. 2013. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in alltaxa biotic surveys. Molecular Ecology Resources 13(5): 851-861. https://doi.org/10.1111/1755-0998.12138
  29. Greenstone, M.H., D.C. Weber, T.A. Coudron, M.E. Payton and J.S. Hu. 2012. Removing external DNA contamination from arthropod predators destined for molecular gut-content analysis. Molecular Ecology Resources 12: 464-469. https://doi.org/10.1111/j.1755-0998.2012.03112.x
  30. Hajibabaei, M., J.R. dewaard, N.V. Ivanova, S. Ratnasingham, R.T. Dooh, S.L. Kirk, P.M. Mackie and P.D. Hebert. 2005. Critical factors for assembling a high volume of DNA barcodes. Philosophical Transactions of the Royal Society B: Biological Sciences 360(1462): 1959-1967. https://doi.org/10.1098/rstb.2005.1727
  31. Harris, R., P. Wiebe, J. Lenz, H.R. Skjoldal and M. Huntley. 2000. ICES zooplankton methodology manual. Academic Press, San Diego, p. 684.
  32. Harvey, J.B., S.B. Johnson, J.L. Fisher, W.T. Peterson and R.C. Vrijenhoek. 2017. Comparison of morphological and next generation DNA sequencing methods for assessing zooplankton assemblages. Journal of Experimental Marine Biology and Ecology 487: 113-126. https://doi.org/10.1016/j.jembe.2016.12.002
  33. Hebert, P.D.N., A. Cywinska, S.L. Ball and J.R. DeWaard. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London Series B-Biological Sciences 270(1512): 313-321. https://doi.org/10.1098/rspb.2002.2218
  34. Hillis, D.M., B.K. Mabel and C. Moritz. 1996. Application of molecular systematics: The state of the field and a look to the future. Molecular Systematics. Sinauer. Sunderland. pp. 515-543.
  35. Hirai, J., S. Katakura, H. Kasai and S. Nagai. 2017a. Cryptic zooplankton diversity revealed by a metagenetic approach to monitoring metazoan communities in the coastal waters of the Okhotsk Sea, Northeastern Hokkaido. Frontiers in Marine Science 4: 379. https://doi.org/10.3389/fmars.2017.00379
  36. Hirai, J., S. Nagai and K. Hidaka. 2017b. Evaluation of metagenetic community analysis of planktonic copepods using Illumina MiSeq: comparisons with morphological classification and metagenetic analysis using Roche 454. PloS One 12(7): e0181452. https://doi.org/10.1371/journal.pone.0181452
  37. Ho, T.W., J.S. Hwang, M.K. Cheung, H.S. Kwan and C.K. Wong. 2017. DNA-based study of the diet of the marine calanoid copepod Calanus sinicus. Journal of Experimental Marine Biology and Ecology 494: 1-9. https://doi.org/10.1016/j.jembe.2017.04.004
  38. Ishida, S., A.A. Kotov and D.J. Taylor. 2006. A new divergent lineage of Daphnia (Cladocera: Anomopoda) and its morphological and genetical differentiation from Daphnia curvirostris Eylmann, 1887. Zoological Journal of the Linnean Society 146(3): 385-405. https://doi.org/10.1111/j.1096-3642.2006.00214.x
  39. Jeffery, N.W., M. Elias-Gutierrez and S.J. Adamowicz. 2011. Species diversity and phylogeographical affinities of the Branchiopoda (Crustacea) of Churchill, Manitoba, Canada. PLoS One 6(5): e18364. https://doi.org/10.1371/journal.pone.0018364
  40. Jo, H., M. Ventura, N. Vidal, J.S. Gim, T. Buchaca, L.A. Barmuta, E. Jeppesen and G.J. Joo. 2016. Discovering hidden biodiversity: the use of complementary monitoring of fish diet based on DNA barcoding in freshwater ecosystems. Ecology and Evolution 6: 219-232. https://doi.org/10.1002/ece3.1825
  41. Kang, J.H., K.H. Yu, S.K. Kim, J.Y. Park, B.S. Kim and C.M. An. 2010. Species identification and genetic structure of octopus minor from Korea and China on the basis of partial sequences of mitochondrial Cytochrome Oxidase I. The Korean Journal of Malacology 26(4): 285-290.
  42. Kim, D.K., K. Park, H. Jo and I.S. Kwak. 2019. Comparison of water sampling between environmental DNA metabarcoding and conventional microscopic identification: a case study in Gwangyang Bay, South Korea. Applied Science 9: 3272. https://doi.org/10.3390/app9163272
  43. Kim, G., H.K. Kang, C.G. Kim, J.H. Choi and S. Kim. 2021. Comparison of morphological analysis and DNA metabarcoding of crustacean mesozooplankton in the Yellow Sea. Ocean and Polar Research 43(1): 45-51. https://doi.org/10.4217/OPR.2021.43.1.045
  44. Kim, H., C.R. Lee, S.K. Lee, S.Y. Oh and W. Kim. 2020. Biodiversity and community structure of mesozooplankton in the marine and coastal national park areas of Korea. Diversity 12: 233. https://doi.org/10.3390/d12060233
  45. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111-120. https://doi.org/10.1007/BF01731581
  46. Lee, S.H., W.C. Lee and J.W. Back. 2011. Comparative study of DNA extraction method in meiofauna. Korean Journal of Environmental Biology 29(3): 138-143.
  47. Lindeque, P.K., H.E. Parry, R.A. Harmer, P.J. Somerfield and A. Atkinson. 2013. Next generation sequencing reveals the hidden diversity of zooplankton assemblages. PloS One 8(11): e81327. https://doi.org/10.1371/journal.pone.0081327
  48. Machida, R.J., M.U. Miya, M. Nishida and S. Nishida. 2002. Complete mitochondrial DNA sequence of Tigriopus japonicus (Crustacea: Copepoda). Marine Biotechnology 4(4): 406-417. https://doi.org/10.1007/s10126-002-0033-x
  49. Machida, R.J., M.U. Miya, M. Nishida and S. Nishida. 2004. Large-scale gene rearrangements in the mitochondrial genomes of two calanoid copepods Eucalanus bungii and Neocalanus cristatus (Crustacea), with notes on new versatile primers for the srRNA and COI genes. Gene 332: 71-78. https://doi.org/10.1016/j.gene.2004.01.019
  50. Makino, W., H. Ohtsuki and J. Urabe. 2013. Finding copepod footprints: a protocol for molecular identification of diapausing eggs in lake sediments. Limnology 14(3): 269-282. https://doi.org/10.1007/s10201-013-0404-1
  51. Makino, W., N. Maruoka, M. Nakagawa and N. Takamura. 2017. DNA barcoding of freshwater zooplankton in Lake Kasumigaura, Japan. Ecological Research 32(4): 481-493. https://doi.org/10.1007/s11284-017-1458-z
  52. Maruoka, N., H. Ohtsuki, W. Makino and J. Urabe. 2018. Rediscovery after almost 120 years: Morphological and genetic evidence supporting the validity of Daphnia mitsukuri (Crustacea: Cladocera). Zoological Science 35(5): 468-475. https://doi.org/10.2108/zs170081
  53. Meredith, C., J. Hoffman, A. Trebitz, E. Pilgrim, S. Okum, J. Martinson and E.S. Cameron. 2021. Evaluating the performance of DNA metabarcoding for assessment of zooplankton communities in Western Lake Superior using multiple markers. Metabarcoding and Metagenomics 5: e64735. https://doi.org/10.3897/mbmg.5.64735
  54. Messing, J. 1983. New M13 vectors for cloning. Methods in Enzymology 101: 20-78. https://doi.org/10.1016/0076-6879(83)01005-8
  55. Meyer, C.P., J.B. Geller and G. Paulay. 2005. Fine scale endemism on coral reefs: Archipelagic differentiation in turbinid gastropods. Evolution 59: 113-125. https://doi.org/10.1111/j.0014-3820.2005.tb00899.x
  56. Montero-Pau, J., A. Gomez and J. Munoz. 2008. Application of an inexpensive and high-throughput genomic DNA extraction method for the molecular ecology of zooplanktonic diapausing eggs. Limnology and Oceanography: Methods 6(6): 218-222. https://doi.org/10.4319/lom.2008.6.218
  57. Montiel-Martinez, A., J. Ciros-Perez, E. Ortega-Mayagoitia and M. Elias-Gutierrez. 2008. Morphological, ecological, reproductive and molecular evidence for Leptodiaptomus garciai (Osorio-Tafall 1942) as a valid endemic species. Journal of Plankton Research 30(10): 1079-1093. https://doi.org/10.1093/plankt/fbn067
  58. Nishida, H. and J. Sugiyama. 1993. Phylogenetic relationships among Taphrina, Saitoella, and other higher fungi. Molecular Biology and Evolution 10(2): 431-436.
  59. Oh, H.J., P.H. Krogh, H.G. Jeong, G.J. Joo, I.S. Kwak, S.J. Hwang, J.S. Gim, K.H. Chang and H. Jo. 2020a. Pretreatment method for DNA barcoding to analyze gut contents of rotifers. Applied Sciences 10(3): 1064. https://doi.org/10.3390/app10031064
  60. Oh, H.J., Y.J. Chae, D. Ku, Y.J. Kim, J.H. Wang, B. Choi, C.W. Ji, I.S. Kwak, Y.S. Park, G.S. Nam, Y.J. Kim and K.H. Chang. 2020b. A comparative study on the information of zooplankton community based on towing type and depth in the lake ecosystems. Korean Journal of Environment and Ecology 53(4): 365-373. https://doi.org/10.11614/KSL.2020.53.4.365
  61. Pace, N.R. 1997. A molecular view of microbial diversity and the biosphere. Science 276(5313): 734-740. https://doi.org/10.1126/science.276.5313.734
  62. Park, C.H., K.M. Kim, A. Elvebakk, O.S. Kim, G. Jeong and S.G. Hong. 2015. Algal and fungal diversity in Antarctic lichens. Journal of Eukaryotic Microbiology 62(2): 196-205. https://doi.org/10.1111/jeu.12159
  63. Park, C., S.J. Ju, W. Park, H.W. Kim, S.R. Lee and J.H. Park. 2018. The strategy of population maintenance by coastal copepod inferred from seasonal variations in abundance of adults and resting eggs. Ocean & Polar Research 40(4): 213-222.
  64. Pearman, J.K., M.M. El-Sherbiny, A. Lanzen, A.M. Al-Aidaroos and X. Irigoien. 2014. Zooplankton diversity across three Red Sea reefs using pyrosequencing. Frontiers in Marine Science 1: 27.
  65. Prendini, L., R. Hanner and R. DeSalle. 2002. Obtaining, storing and archiving specimens and tissue samples for use in molecular studies. In: Techniques in molecular systematics and evolution. Birkhauser, Basel. pp. 176-248.
  66. Prosser, S., A. Martinez-Arce and M. Elias Gutierrez. 2013. A new set of primers for COI amplification from freshwater microcrustaceans. Molecular Ecology Resources 13(6): 1151-1155. https://doi.org/10.1111/1755-0998.12132
  67. Quiroz-Vazquez, P. and M. Elias-Gutierrez. 2009. A new species of the freshwater cladoceran genus Scapholeberis Schoedler, 1858 (Cladocera: Anomopoda) from the semidesert Northern Mexico, highlighted by DNA barcoding. Zootaxa 2236(1): 50-64. https://doi.org/10.11646/zootaxa.2236.1.4
  68. Robeson, M.S., E.K. Costello, K.R. Freeman, J. Whiting, B. Adams, A.P. Martin and S.K. Schmidt. 2009. Environmental DNA sequencing primers for eutardigrades and bdelloid rotifers. BMC Ecology 9(1): 1-10. https://doi.org/10.1186/1472-6785-9-1
  69. Rychlik, W.J.S.W., W.J. Spencer and R.E. Rhoads. 1990. Optimization of the annealing temperature for DNA amplification in vitro. Nucleic Acids Research 18(21): 6409-6412. https://doi.org/10.1093/nar/18.21.6409
  70. Sambrook, J., E.F. Fritsch and T. Maniatis. 1989. Molecular cloning: a laboratory manual(No. Ed. 2). Cold spring harbor laboratory press.
  71. Sanger, F., S. Nicklen and A.R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, USA 74: 5463-5467. https://doi.org/10.1073/pnas.74.12.5463
  72. Schroeder, A., D. Stankovic, A. Pallavicini, F. Gionechetti, M. Pansera and E. Camatti. 2020. DNA metabarcoding and morphological analysis-assessment of zooplankton biodiversity in transitional waters. Marine Environmental Research 160: 104946. https://doi.org/10.1016/j.marenvres.2020.104946
  73. Shokralla, S., J.L. Spall, J.F. Gibson and M. Hajibabaei. 2012. Nextgeneration sequencing technologies for environmental DNA research. Molecular Ecology 21(8): 1794-1805. https://doi.org/10.1111/j.1365-294X.2012.05538.x
  74. Symondson, W.O.C. 2002. Molecular identification of prey in predator diets. Molecular Ecology 11: 627-641. https://doi.org/10.1046/j.1365-294X.2002.01471.x
  75. Taberlet, P., E. Coissac, F. Pompanon, C. Brochmann and E. Willerslev. 2012. Towards next-generation biodiversity assessment using DNA metabarcoding. Molecular Ecology 21(8): 2045-2050. https://doi.org/10.1111/j.1365-294X.2012.05470.x
  76. Taylor, D.J., C.R. Ishikane and R.A. Haney. 2002. The systematics of Holarctic bosminids and a revision that reconciles molecular and morphological evolution. Limnology and Oceanography 47(5): 1486-1495. https://doi.org/10.4319/lo.2002.47.5.1486
  77. Truett, G.E., P. Heeger, R.L. Mynatt, A.A. Truett, J.A. Walker and M.L. Warman. 2000. Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques 29(1): 52-54. https://doi.org/10.2144/00291bm09
  78. Valdez-Moreno, M., M. Mendoza-Carranza, E. Rendon-Hernandez, E. Alarcon-Chavira and M. Elias-Gutierrez. 2021. DNA Barcodes Applied to a Rapid Baseline Construction in Biodiversity Monitoring for the Conservation of Aquatic Ecosystems in the Sian Ka'an Reserve (Mexico) and Adjacent Areas. Diversity 13(7): 292. https://doi.org/10.3390/d13070292
  79. Xie, Y., J. Wang, J. Yang, J.P Giesy, H. Yu and X. Zhang. 2017. Environmental DNA metabarcoding reveals primary chemical contaminants in freshwater sediments from different land-use types. Chemosphere 172: 201-209. https://doi.org/10.1016/j.chemosphere.2016.12.117
  80. Xiong, W., X. Huang, Y. Chen, R. Fu, X, Du, X. Chen and A. Zhan. 2020. Zooplankton biodiversity monitoring in polluted freshwater ecosystems: a technical review. Environmental Science and Ecotechnology 1: 100008. https://doi.org/10.1016/j.ese.2019.100008
  81. Yang, J., X. Zhang, Y. Xie, C. Song, Y. Zhang, H. Yu and G.A. Burton. 2017. Zooplankton community profiling in a eutrophic freshwater ecosystem-lake tai basin by DNA metabarcoding. Scientific Reports 7(1): 1-11. https://doi.org/10.1038/s41598-016-0028-x
  82. Yang, J. and X. Zhang. 2020. eDNA metabarcoding in zooplankton improves the ecological status assessment of aquatic ecosystems. Environment International 134: 105230. https://doi.org/10.1016/j.envint.2019.105230
  83. Yoon, H., A.R. Ko, J.H. Kang, J.K. Choi and S.J. Ju. 2016. Diet of chaetognaths Sagitta crassa and S. nagae in the Yellow Sea inferred from gut content and fatty acid analyses. Ocean and Polar Research 38(1): 35-46. https://doi.org/10.4217/OPR.2016.38.1.035
  84. Zhang, X., J. Liao, S. Xu, P. Liu, Q. Huang, H.J. Dumont and B.P. Han. 2020. A set of new primers for COI (cytochrome oxidase subunit 1 mitochondrial gene) amplification in Phyllodiaptomus tunguidus (Copepoda, Calanoida, Diaptomidae). Mitochondrial DNA Part B 5(2): 1622-1624. https://doi.org/10.1080/23802359.2020.1745100
  85. Zhang, Y., S. Xu, C. Sun, H. Dumont and B.P. Han. 2021. A new set of highly efficient primers for COI amplification in rotifers. Mitochondrial DNA Part B 6(2): 636-640. https://doi.org/10.1080/23802359.2021.1878951
  86. Zhu D., B.G.M. Jamieson, A. Hugall and C. Moritz. 1994. Sequence evolution a and phylogenetic signal in control region and cytochrome b sequences of rainbow fishes. Molecular Biology and Evolution 11: 672-683.