• Title/Summary/Keyword: DNA interaction

Search Result 467, Processing Time 0.023 seconds

Interaction of Ruthenium(II)[(1,10-phenanthroline)2benzodipyrido[3,2-a:2',3'-c]-phenazine]2+ with Single Stranded Poly(dA) and Poly(dT): Turning off the Light Switch

  • Lee, Jeong-Mi;Choi, Ji-Yoon;Kim, Jong-Moon;Lee, Sang-Yong;Lee, Hyo-Sun;Kim, Seog-K.;Cho, Tae-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권6호
    • /
    • pp.965-969
    • /
    • 2007
  • The spectral properties, namely the circular dichroism, electric absorption and luminescence properties, of Λ- and Δ-[Ru(II)(1,10-phenanthroline)2benzodipyrido[b:3,2-h:2',3'-j]phenazine]2+ ([Ru(phen)2BDPPZ]2+) in the presence and absence of single stranded poly(dA) and poly(dT) were compared in this work. In the presence of single stranded DNAs, hypochromism in the absorption spectrum and significant changes in the circular dichroism spectrum in the ligand absorption band were apparent, indicating the strong interaction of the [Ru(phen)2BDPPZ]2+ complex with the single stranded DNAs. The luminescence intensity of the Ru(II) complex decreased stoichiometrically with increasing concentrations of the single stranded DNAs. All of these spectral changes were independent of the configuration of the Ru(II) complex and the nature of the DNA bases. Therefore, it is conceivable that both enantiomers of the [Ru(phen)2BDPPZ]2+ complex interact electrostatically with the negatively charged phosphate groups of DNA. However, the spectral properties of [Ru(II)(1,10-phenanthroline)3]2+ were not altered even in the presence of single stranded DNAs. Therefore, the size of the ligand involved in the interaction of the metal complex with the phosphate group of DNA may play an important role, even when the nature of the interaction is electrostatic.

DNA와 상호작용에서 T4 endonuclease V의 C-말단 부위의 역할에 관한 분광학적 연구: 핵자기공명과 형광 실험 (The Spectroscopic Study on the Role of C-terminal Region of T4 endonuclease V in the Interaction with DNA: NMR and Fluorescence Experiment)

  • 유준석;임형미;임후강;신정휴;이봉진
    • 약학회지
    • /
    • 제40권2호
    • /
    • pp.193-201
    • /
    • 1996
  • In order to study the role of C-terminal aromatic region of T4 endonuclease V in the interaction with substrate DNA, NMR and Fluorescence spectrum were recorded. Analysis of flu orescence emission spectra showed that C-terminal region of T4 endonuclease V is in or very near the binding site. In the HSQC spectrum of $^{15}N$-Tyr-labeled T4 endonuclease V*DNA complex, the broadening of a peak was observed. It is presumed that this peak corresponds to one among three tyrosine residues which belong to the WYKYY segment of C-terminal region of T4 endonuclease V. Interactions of peptide fragments consisting of C-terminal residues of T4 endonuclease V with DNAs(TT-, T^T-DNA) were investigated by NMR and Fluorescence experiment. The results suggest that two peptide fragments themselves bind to DNAs and their binding pattern is not an intercalation mode.

  • PDF

Structural and Functional Insight into Proliferating Cell Nuclear Antigen

  • Park, So Young;Jeong, Mi Suk;Han, Chang Woo;Yu, Hak Sun;Jang, Se Bok
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권4호
    • /
    • pp.637-647
    • /
    • 2016
  • Proliferating cell nuclear antigen (PCNA) is a critical eukaryotic replication accessory factor that supports DNA binding in DNA processing, such as DNA replication, repair, and recombination. PCNA consists of three toroidal-shaped monomers that encircle double-stranded DNA. The diverse functions of PCNA may be regulated by its interactions with partner proteins. Many of the PCNA partner proteins generally have a conserved PCNA-interacting peptide (PIP) motif, located at the N- or C- terminal region. The PIP motif forms a 310 helix that enters into the hydrophobic groove produced by an interdomain-connecting loop, a central loop, and a C-terminal tail in the PCNA. Post-translational modification of PCNA also plays a critical role in regulation of its function and binding partner proteins. Structural and biochemical studies of PCNA-protein will be useful in designing therapeutic agents, as well as estimating the outcome of anticancer drug development. This review summarizes the characterization of eukaryotic PCNA in relation to the protein structures, functions, and modifications, and interaction with proteins.

Comparison of the Binding Modes of [Ru(2,2'-bipyridine)3]2+ and [Ru(2,2':6',2"-terpyridine)2]2+ to Native DNA

  • Jang, Yoon-Jung;Lee, Hyun-Mee;Jang, Kyeung-Joo;Lee, Jae-Cheol;Kim, Seog-K.;Cho, Tae-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권5호
    • /
    • pp.1314-1318
    • /
    • 2010
  • The $[Ru(tpy)_2]Cl_2$ (tpy:2,2':6',2"-terpyridine) complex was synthesized and its structure was confirmed by $^1H$-NMR and elemental analysis. Its binding mode toward DNA was compared with the well-known $[Ru(bpy)_3]Cl_2$ (bpy:2,2-bipyridyl), using isotropic absorption, linear dichroism(LD) spectroscopy, and an energy minimization study. Compared to $[Ru(bpy)_3]^{2+}$, the $[Ru(tpy)_2]^{2+}$ complex exhibited very little change in its absorption pattern, especially in the MLCT band, upon binding to DNA. Furthermore, upon DNA binding, both Ru(II) complexes induced a decrease in the LD magnitude in the DNA absorption region. The $[Ru(tpy)_2]^{2+}$ complex produced a strong positive LD signal in the ligand absorption region, which is in contrast with the $[Ru(bpy)_3]^{2+}$ complex. Observed spectral properties led to the conclusion that the interaction between the ligands and DNA bases is negligible for the $[Ru(tpy)_2]^{2+}$ complex, although it formed an adduct with DNA. This conclusion implies that both complexes bind to the surface of DNA, most likely to negatively charged phosphate groups via a simple electrostatic interaction, thereby orienting to exhibit the LD signal. The energy minimization calculation also supported this conclusion.

Characterization of DNA/Poly(ethylene imine) Electrolyte Membranes

  • Park, Jin-Kyoung;Won, Jong-Ok;Kim, Chan-Kyung
    • Macromolecular Research
    • /
    • 제15권6호
    • /
    • pp.581-586
    • /
    • 2007
  • Cast DNA/polyethyleneimine (PEI) blend membranes containing different amounts of DNA were prepared using acid-base interaction and characterized with the aim of understanding the polymer electrolyte membrane properties. Two different molecular weights of PEI were used to provide the mechanical strength, while DNA, a polyelectrolyte, was used for the proton transport channel. Proton conductivity was observed for the DNA/PEI membrane and reached approximately $3.0{\times}10^{-3}S/cm$ for a DNA loading of 16 wt% at $80^{\circ}C$. The proton transport phenomena of the DNA/PEI complexes were investigated in terms of the complexation energy using the density functional theory method. In the case of DNA/PEI, a cisoid-type complex was more favorable for both the formation of the complex and the dissociation of hydrogen from the phosphate. Since the main requirement for proton transport in the polymer matrix is to dissociate the hydrogen from its ionic sites, this suggests the significant role played by the basicity of the matrix.

On the continuum formulation for modeling DNA loop formation

  • Teng, Hailong;Lee, Chung-Hao;Chen, Jiun-Shyan
    • Interaction and multiscale mechanics
    • /
    • 제4권3호
    • /
    • pp.219-237
    • /
    • 2011
  • Recent advances in scientific computing enable the full atomistic simulation of DNA molecules. However, there exists length and time scale limitations in molecular dynamics (MD) simulation for large DNA molecules. In this work, a two-level homogenization of DNA molecules is proposed. A wavelet projection method is first introduced to form a coarse-grained DNA molecule represented with superatoms. The coarsened MD model offers a simplified molecular structure for the continuum description of DNA molecules. The coarsened DNA molecular structure is then homogenized into a three-dimensional beam with embedded molecular properties. The methods to determine the elasticity constants in the continuum model are also presented. The proposed continuum model is adopted for the study of mechanical behavior of DNA loop.

Evidence of Interaction of Phage P22 Tailspike Protein with DnaJ During Translational Folding

  • Lee, Sang-Chul;Yu, Myeong-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권1호
    • /
    • pp.162-166
    • /
    • 2004
  • Phage P22 tailspike is a thermostable homotrimeric protein, and temperature-sensitive folding (tsf) and global suppressor mutations affect its folding yields at elevated temperatures. We earlier suggested that the folding of the tailspike protein in Escherichia coli requires an unidentified molecular chaperone. Accordingly, in the present study, the interactions of purified DnaK, DnaJ, and GrpE heat-shock proteins with the tailspike protein were investigated during the translation and folding of the protein. The cotranslational addition of DnaJ to the tailspike protein resulted in the arrest of folding, when Dnak and GrpE were missing. However, the presence of DnaK, DnaJ, and GrpE had no effect on the folding yield of the tails pike protein, thus, providing evidence for the binding of the nascent tailspike protein with DnaJ protein, a member of DnaK chaperoning cycle.

Mapping of the Interaction Domain of DNA Topoisomerase $II{\alpha}$ and $II{\beta}$ with Extracellular Signal-Regulated Kinase 2

  • Park, Gye-Hwa;Bae, Young-Seuk
    • BMB Reports
    • /
    • 제34권1호
    • /
    • pp.85-89
    • /
    • 2001
  • Both topoisomerase $II{\alpha}$ and $II{\beta}$ east as phosphoproteins in the cells. Recently it was reported that DNA topoisomerase $II{\alpha}$ associates with and is phosphorylated by the extracellular signal-regulated kinase 2 (ERK2). Also, ERK2 stimulates the activity of topoisomerase II by a phosphorylation-independent manner [Shapiro et al., (1999) Mol. Cell. Biol. 19, 3551-3560]. In this study, a yeast two-hybrid system was used to investigate the binding site between topoisomerase $II{\alpha}$ or $II{\beta}$ and ERK2. The two-hybrid test clearly showed that topoisomerase $II{\beta}$ residues 1099-1263, and topoisomerase $II{\alpha}$ residues 1078-1182, mediate the interaction with ERK2, and that the leucine zipper motifs of topoisomerase $II{\alpha}$ and $II{\beta}$ are not required for its physical binding to ERK2. Our results suggest that topoisomerase $II{\beta}$ residues 1099-1263, and topoisomerase $II{\alpha}$ residues 1078-1182, may be common binding sites for activator proteins.

  • PDF

Spectroscopic Studies on Interaction of Protoberberines with the Deoxyoligonucleotide d(GCCGTCGTTTTACA)2

  • Park, Hye-Seo;Kim, Eun-Hee;Kang, Mi-Ran;Chung, In-Kwon;Cheong, Chae-Joon;Lee, Weon-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권10호
    • /
    • pp.1559-1563
    • /
    • 2004
  • The topoisomerase II poisoning effect of certain protoberberine alkaloids is associated with anti-cancer activity. Structure-activity relationships of protoberberine analogues substituted on the ring protons reveal that substitution at the C19 position is an important determinant of biological activity. In this study, the effects of substituent modification at the C19 position on the interaction of protoberberines with DNA are determined using UV and NMR spectroscopy. The line broadening effect on aliphatic resonances, chemical shift changes of the imino protons of HP14 upon berberine and berberrubine binding to HP14, and the rate of the exchange process between protoberberine analogs bound indicate that berberrubine binds HP14 more specifically than berberine. In addition, the free HP14 is altered by the substituent at the 19-position. UV spectra of berberrubine have shown a hypochromic effect together with a slight red shift, which are usually regarded as characteristics of DNA intercalation. These results are consistent with our previous report that the berberrubine is partially intercalated with HP14 with molar ratio 1 : 1, whereas a non-specific interaction is predominant between the berberine and HP14.

Exploitation of the Dose/Time-Response Relationship for a New Measure of DNA Repari in the Single-Cell Gel Electrophoresis (Comet) Assay

  • Kim, Byung-Soo;Edler, Lutz;Park, Jin-Joo;Fournier, Dietrich Von;Haase, Wulf;Sautter-Bihl, Mare-Luise;Hagmuller, Egbert;Gotzes, Florian;Thielmann, Heinz Walter
    • Toxicological Research
    • /
    • 제20권2호
    • /
    • pp.89-100
    • /
    • 2004
  • The comet assay (also called the single-cell gel electrophoresis assay) has been widely used for detecting DNA damage and repair in individual cells. Since the conventional methods of evaluating comet assay data using frequency statistics are unsatisfactory we developed a new quantitative measure of DNA damage/repair that is based on all information residing in the dose/time-response curves of a comet experiment. Blood samples were taken from 25 breast cancer patients before undergoing radiotherapy. The comet assay was performed under alkaline conditions using isolated lymphocytes. Tail DNA, tail length, tail moment and tail inertia of the comet were measured for each patient at four doses of $\gamma$-rays (0, 2, 4 and 8 Gy) and at four time points after irradiation (0, 10, 20 and 30 min) using 100 cells each. The resulting three-dimensional dose-time response surface was modeled by multiple regression, and the second derivative, termed 2D, on dose and time was determined. A software module was programmed in SAS/AF to compute 2D values. We applied the new method successfully to data obtained from cancer patients to be assessed for their radiation sensitivity. We computed the 2D values for the four damage measures, i.e., tail moment, tail length, tail DNA and tail inertia, and examined the pairwise correlation coefficients of 2D both on the log scale and the unlogged scale. 2D values based on tail moment and tail DNA showed a high correlation and, therefore, these two damage measures can be used interchangeably as far as DNA repair is concerned. 2D values based on tail inertia have a correlation profile different from the other 2D values which may reflect different facets of DNA damage/repair. Using the dose-time response surface, other statistical models, e.g., the proportional hazards model, become applicable for data analysis. The 2D approach can be applied to all DNA repair measures, Le., tail moment, tail length, tail DNA and tail inertia, and appears to be superior to conventional evaluation methods as it integrates all data of the dose/time-response curves of a comet assay.