• 제목/요약/키워드: DNA interaction

검색결과 464건 처리시간 0.026초

P22-Based Challenge Phage Constructs to Study DNA-Protein Interactions between the $\sigma$54-Dependent Promoter, dctA, and Its Transcriptional Regulators

  • Kim, Euhgbin;Kim, Daeyou;Lee, Joon-Haeng
    • Journal of Microbiology
    • /
    • 제38권3호
    • /
    • pp.176-179
    • /
    • 2000
  • A challenge phage system was used to study the DNA-protein interaction between C4-dicarboxylic acid transport protein D(DCTD) or $\sigma$54, and a $\sigma$54 -dependent promoter, dctAp. R. meliloti dctA promoter regulatory region replaced the Omnt site on the phage. S. typhimurium strains overproducing either DCTD or $\sigma$54 directed this challenge phage towards lysogency, indicating that DCTD or E$\sigma$54 recognized the dctA promoter on the phage and repressed transcription of the ant gene. These challenge phage constructs will be useful for examining interactions between DCTD(or $\sigma$54) and the dctA promoter region.

  • PDF

Identification of a Cellular Protein Interacting with Murine Retrovirus Gag Polyproteins

  • Choi, Wonja
    • Journal of Microbiology
    • /
    • 제34권4호
    • /
    • pp.311-315
    • /
    • 1996
  • The retroviral Gag polyprotein directs the assembly of virion particles and plays an important role in some events after entry into a host cell. The Gag polyprotein of a virus mixture is responsible for inducing murine acquired immunodeficiency syndrome (MAIDS) when injected into susceptible strains of mice. In order to identify the host cellular proteins which interact with the MAIDS virus Gag proteins and possibly mediate the function of the Gag proteins, mouse T-cell leukemic cDNA expression library was screened using the yeast GAL4 two hybrid system. Of 11 individual positive clones, the clone Y1 was selected for the study of protein-protein interaction. Its DNA sequence revealed that it was an exact match to the murine SH3 domain-containing protein SH3P8. It is expressed as 2.4 kbp transcripts in testis at higher levels and in various tissues tested at lower levels. Glutathione S-transferase-Y1 fusion protein binds tightly to $Pr60^{def-gag}$ as well as $Pr65^{eco-gag}$.

  • PDF

BINDING OF LEAF NUCLEAR PROTEIN EXTRACTS TO LIGHT-RESPONSIVIE ELEMENTS OF cab PROMOTERS OF Arabidopsis thaliana

  • Lee, Hwa-Hyung;Park, Hee-Jin
    • Journal of Photoscience
    • /
    • 제3권2호
    • /
    • pp.85-90
    • /
    • 1996
  • The binding ability of leaf nuclear extracts to the lighbresponsive elements (LREs) of cab promoters of Arabidopsis thaliana has been investigated. The cab promoters were fragmented with restr ction endonucleases into LRE that were identified by Mitra et al. [Plant Mol. Biol. 12, 169179 ( 1989)] and other small fragments. After end labeling with Klenow fragment, the fragments were assayed for binding with the leaf nuclear proteins that were prepared by solubilizing the purified nuclei with 0.5 M ammonium sulfate. The binding ability was assayed by mobility shift assay. To perform successful mobility shift assay, several factors affecting the interaction of protein with DNA were optimized before performing the assay. The LREs had several retardation bands. However, the other promoter fragments from the transcription start site to the far upstream region of the promoters had also retardation bands. No particular relationships could be found between the retardation band distributions and the loci of LRE. It is likely that the light-regulation of cab gene expression may be controlled by the multiple interactions of the regulatory protein factors with DNA motifs.

  • PDF

Identification of a Deoxyribonuclease I Inhibitor from a Phage-Peptide Library

  • Choi, Suk-Jung;Sperinde, Jeffrey J.;Szoka, Francis C. Jr.
    • Molecules and Cells
    • /
    • 제19권1호
    • /
    • pp.54-59
    • /
    • 2005
  • Deoxyribonuclease I (DNase I) is a divalent cation dependent endonuclease and thought to be a significant barrier to effective gene delivery. The only known DNase I-specific inhibitor is monomeric actin which acts by forming a 1:1 complex with DNase I. Its use, however, is restricted because of tendency to polymerize under certain conditions. We screened two random phage peptide libraries of complexity $10^8$ and $10^9$ for DNase I binders as candidates for DNase I inhibitors. A number of DNase I-binding peptide sequences were identified. When these peptides were expressed as fusion proteins with Escherichia coli maltose binding protein, they inhibited the actin-DNase I interaction ($IC_{50}=0.1-0.7{\mu}M$) and DNA degradation by DNase I ($IC_{50}=0.8-8{\mu}M$). Plasmid protection activity in the presence of DNase I was also observed with the fusion proteins. These peptides have the potential to be a useful adjuvant for gene therapy using naked DNA.

Effects of a Phosphomimetic Mutant of RAP80 on Linear Polyubiquitin Binding Probed by Calorimetric Analysis

  • Thach, Thanh Trung;Jee, Jun-Goo;Lee, Sang-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권4호
    • /
    • pp.1285-1289
    • /
    • 2012
  • RAP80 plays a key role in DNA damage responses by recognizing K63-linked polyubiquitin moieties through its two ubiquitin-interacting motif (UIM) domains. The linker between the two UIMs possesses a phosphorylation site, but the relationship between phosphorylation and polyubiquitin recognition remains elusive. We investigated the interaction between a phosphorylation-mimic RAP80 mutant S101E and linear polyubiquitins, structurally equivalent to the K63-linked ones, using isothermal titration calorimetry (ITC). ITC analysis revealed differential binding affinities for linear tetraubiquitin by otherwise equivalent UIMs in S101E. Mutational analysis supported such differential polyubiquitin recognition by S101E. Our results suggest a potential crosstalk between polyubiquitin recognition and phosphorylation in RAP80.

Backbone assignment and structural analysis of anti-CRISPR AcrIF7 from Pseudomonas aeruginosa prophages

  • Kim, Iktae;Suh, Jeong-Yong
    • 한국자기공명학회논문지
    • /
    • 제25권3호
    • /
    • pp.39-44
    • /
    • 2021
  • The CRISPR-Cas system provides adaptive immunity for bacteria and archaea against invading phages and foreign plasmids. In the Class 1 CRISPR-Cas system, multi-subunit Cas proteins assemble with crRNA to bind to DNA targets. To disarm the bacterial defense system, bacteriophages evolved anti-CRISPR (Acr) proteins that actively inhibit the host CRISPR-Cas function. Here we report the backbone resonance assignments of AcrIF7 protein that inhibits the type I-F CRISPR-Cas system of Pseudomonas aeruginosa using triple-resonance nuclear magnetic resonance spectroscopy. We employed various computational methods to predict the structure and binding interface of AcrIF7, and assessed the model with experimental data. AcrIF7 binds to Cas8f protein via flexible loop regions to inhibit target DNA binding, suggesting that conformational heterogeneity is important for the Cas-Acr interaction.

Synthesis and Characterization of Polygamies and Their Metal Complexes

  • Jang, Gyu-Hwan;Kim, Yang;Lee, Man-Kil
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.346.3-346.3
    • /
    • 2002
  • The polyamine pathway represents a logical target for chemotherapeutic intervention, since depletion of polyamines results in the disruption of a variety of cellular functions, and may in specific cases result in cytotoxicity. Polyamine interaction with DNA has also long been thought to be an important function of the natural polyamines and as more is learned about the specific interactions and the resultant conformational changes which can be influenced by the polyamine binding to DNA the potential for regional and gene-specific changes are becoming more evident. We have prepraed the elaborate polyamines by the reaction of simpler polyamines with polyalkyating agents. Synthesized polyamines were separated and purified by metal complex formation and ion-exchange chromatography. They were characterized by X-ray crystal structure determinations of their metal complexes.

  • PDF

Backbone assignment of the intrinsically disordered N-terminal region of Bloom syndrome protein

  • Min June Yang;Chin-Ju Park
    • 한국자기공명학회논문지
    • /
    • 제27권3호
    • /
    • pp.17-22
    • /
    • 2023
  • Bloom syndrome protein (BLM) is a pivotal RecQ helicase necessary for genetic stability through DNA repair processes. Our investigation focuses on the N-terminal region of BLM, which has been considered as an intrinsically disordered region (IDR). This IDR plays a critical role in DNA metabolism by interacting with other proteins. In this study, we performed triple resonance experiments of BLM220-300 and presented the backbone chemical shifts. The secondary structure prediction based on chemical shifts of the backbone atoms shows the region is disordered. Our data could help further interaction studies between BLM220-300 and its binding partners using NMR.

The Principles and Applications of High-Throughput Sequencing Technologies

  • Jun-Yeong Lee
    • 한국발생생물학회지:발생과생식
    • /
    • 제27권1호
    • /
    • pp.9-24
    • /
    • 2023
  • The advancement in high-throughput sequencing (HTS) technology has revolutionized the field of biology, including genomics, epigenomics, transcriptomics, and metagenomics. This technology has become a crucial tool in many areas of research, allowing scientists to generate vast amounts of genetic data at a much faster pace than traditional methods. With this increased speed and scale of data generation, researchers can now address critical questions and gain new insights into the inner workings of living organisms, as well as the underlying causes of various diseases. Although the first HTS technology have been introduced about two decades ago, it can still be challenging for those new to the field to understand and use effectively. This review aims to provide a comprehensive overview of commonly used HTS technologies these days and their applications in terms of genome sequencing, transcriptome, DNA methylation, DNA-protein interaction, chromatin accessibility, three-dimensional genome organization, and microbiome.

Zebrafish (Danio rerio) Thyroid Hormone Receptor $\alpha$1 Counteracts Retinoic Acid-induced Transcription

  • Rhee, Myubg-Chull;Lee, Woonghee;Chang, Mi-Sook;Lee, Sang-Kyou
    • Animal cells and systems
    • /
    • 제2권1호
    • /
    • pp.133-137
    • /
    • 1998
  • The present study aims to characterize a cDNA encoding zebrafish thyroid hormone receptor $\alpha{1}$ $(zTR\alpha{1)}$ in order to investigate its possible role in the early stage of embryonic development. A mobility shift assay showed that $zTR\alpha{1}$ overexpressed in COS7 cells specifically bound to thyroid hormone response element (TRE). In addition, the specific interaction of anti-rat $TR\alpha{1}$ antibodies with $zTR\alpha1$/TRE complexes demonstrated that the cDNA clone encoded zebrafish thyroid hormone receptor $\alpha{1}$. Transient cotransfection assays showed that $zTR\alpha{1}$ repressed the transcription which was induced by retinoic acid (RA), a well-characterized embryonic morphogen. These results suggest that zTRal may be involved in regulating the RA-induced gene transcription during early embryonic development.

  • PDF