• Title/Summary/Keyword: DNA diagnostics

Search Result 61, Processing Time 0.036 seconds

Protein Microarrays and Their Applications

  • Lee, Bum-Hwan;Teruyuki Nagamune
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.2
    • /
    • pp.69-75
    • /
    • 2004
  • In recent years, the importance of proteomic works, such as protein expression, detection and identification, has grown in the fields of proteomic and diagnostic research. This is because complete genome sequences of humans, and other organisms, progress as cellular processing and controlling are performed by proteins as well as DNA or RNA. However, conventional I protein analyses are time-consuming; therefore, high throughput protein analysis methods, which allow fast, direct and quantitative detection, are needed. These are so-called protein microarrays or protein chips, which have been developed to fulfill the need for high-throughput protein analyses. Although protein arrays are still in their infancy, technical development in immobilizing proteins in their native conformation on arrays, and the development of more sensitive detection methods, will facilitate the rapid deployment of protein arrays as high-throughput protein assay tools in proteomics and diagnostics. This review summarizes the basic technologies that are needed in the fabrication of protein arrays and their recent applications.

Detection of DNA Hybridization Characteristics Using Electrochemical methods (전기화학법을 이용한 DNA Hybridization 특성 검출)

  • Kim, Do-Kyun;Chang, Jeong-Soo;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1569-1571
    • /
    • 2002
  • The determination of DNA hybridization can apply the molecular biology research, clinic diagnostics, bioengineering, environment monitoring, food science and other application area. So, The determination of hybridization is very important for the improvement of DNA detection system. In this study, we report the characterization of the DNA hybridization by the electricalchemical methods. A new electrochemical biosensor is described for voltammetric detection of gene sequence related to probe oligonucleotide of bacterium Escherichia coli O157:H7. The biosensor involves the immobilization of a 18-mer probe oligonucleotide, which is complemetary to a specific gene sequence related to Escherichia coli O157:H7 on a gold electrode through specific adsorption. The probe oligonucleotide was used to determine the amount of target oligonucleotide in solution using mitoxantrone(MTX) as the electrochemical indicators. The cathodic peak currents $(I_{peak})$ of MTX were linearly related to the concentration of the target oligonucleotide sequence in the range $1[{\mu}M]{\sim}0.1[nM]$. The detection limit of this approach was 0.01[nM]. In addition, these indicators were capable of selectivity discriminating against various mismatching condition.

  • PDF

UNG-based direct polymerase chain reaction (udPCR) for the detection of porcine circovirus 2 (PCV2) (UNG 기반 direct polymerase chain reaction (udPCR)을 이용한 돼지 써코바이러스 2형 진단법)

  • Kim, Eun-Mi;Park, Choi-Kyu
    • Korean Journal of Veterinary Service
    • /
    • v.37 no.4
    • /
    • pp.253-261
    • /
    • 2014
  • Porcine circovirus disease (PCVD) is a major problem of swine industry worldwide, and diagnosis of PCV2, causal agent of PCVD, has been doing in clinical laboratories of pig disease by polymerase chain reaction (PCR) methods. But the PCR analyses have a serious problem of misdiagnosis by contamination of DNA, in particular, from carryover contamination with previously amplified DNA or extracted DNA from field samples. In this study, an uracil DNA glycosylase (UNG)-based direct PCR (udPCR) without DNA extraction process and DNA carryover contamination was developed and evaluated on PCV2 culture and field pig samples. The sensitivity of the udPCR combined with dPCR and uPCR was same or better than that of the commercial PCR (cPCR) kit (Median diagnostics, Korea) on PCV2-positive serum, lymph node and lung samples of the pigs. In addition, the udPCR method confirmed to have a preventing ability of mis-amplification by contamination of pre-amplified PCV2 DNA from previous udPCR. In clinical application, 170 pig samples (86 tissues and 84 serum) were analysed by cPCR kit and resulted in 37% (63/170) of positive reaction, while the udPCR was able to detect the PCV2 DNA in 45.3% (77/170) with higher sensitivity than cPCR. In conclusion, the udPCR developed in the study is a time, labor and cost saving method for the detection of PCV2 and providing a preventing effect for DNA carryover contamination that can occurred in PCR process. Therefore, the udPCR assay could be an useful alternative method for the diagnosis of PCV2 in the swine disease diagnostic laboratories.

Development of Genus- and Species-Specific Probe Design System for Pathogen Detection Based on 23S rDNA

  • Park Jun-Hyung;Park Hee-Kyung;Kang Byeong-Chul;Song Eun-Sil;Jang Hyun-Jung;Kim Cheol-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.740-747
    • /
    • 2006
  • Amplification by universal consensus sequences in pathogenic bacterial DNA would allow rapid identification of pathogenic bacteria, and amplification of genus-specific and species-specific sequences of pathogenic bacterial DNA might be used for genotyping at the genus and species levels. For design of probes for molecular diagnostics, several tools are available as stand-alone programs or as Web application. However, since most programs can design only a few probe sets at one time, they are not suitable for large-scale and automatic probes design. Therefore, for high-throughput design of specific probes in diagnostic array development, an automated design tool is necessary. Thus, we developed a Web-based automatic system for design of genus-specific and species-specific probes for pathogen detection. The system is available at http://www.miprobe.com.

바이오 센서 및 랩온어칩

  • 박유근
    • The Magazine of the IEIE
    • /
    • v.31 no.1
    • /
    • pp.58-72
    • /
    • 2004
  • Smart sensors and biochip technologies have received a great deal of attention in recent years not only because of the enormous potential markets in the healthcare expenditures but more importantly because of its great impact on the quality of human life in the future. Collaborative research among BT (Bio Technologies), IT (Information Technologies) and NT (Nano Technologies) will bring us a new paradigm of the healthcare services. Examples include disease prediction based on the genetic tests, personal medicines, point-of-care analysis, rapid and sensitive infectious disease diagnostics, environmental monitoring for chemical or biological warfares, intelligent drug delivery systems etc. In this report, recent accomplishment in the research area on biosensors, DNA chips, Protein Chips and Lab-on-a-chips are reviewed.

  • PDF

Antibiotics Assay of Doxycycline in Food System using Stripping Voltammetry

  • Ly, Suw Young;Lee, Chang Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.726-733
    • /
    • 2016
  • A voltammetric analysis of doxycycline was developed using DNA immobilized onto a carbon nanotube paste electrode (PE). An anodic peak current was indicated at 0.2 V (versus Ag/AgCl) in a 0.1M $NH_4H_2PO_4$ electrolyte solution. The linear working range of the cyclic and square wave stripping voltammetry was obtained to $1-27ngL^{-1}$ with an accumulation time of 800 s. Final analytical parameters were optimized to be as follows: amplitude, 0.35 V; frequency, 500 Hz; and pH, 5.43. Here detection limit was found to be $0.45ngL^{-1}$, this result can be applied in foods systems and in the biological diagnostics

Optimization of ultra-fast convection polymerase chain reaction conditions for pathogen detection with nucleic acid lateral flow immunoassay

  • Kim, Tae-Hoon;Hwang, Hyun Jin;Kim, Jeong Hee
    • International Journal of Oral Biology
    • /
    • v.44 no.1
    • /
    • pp.8-13
    • /
    • 2019
  • Recently, the importance of on-site detection of pathogens has drawn attention in the field of molecular diagnostics. Unlike in a laboratory environment, on-site detection of pathogens is performed under limited resources. In this study, we tried to optimize the experimental conditions for on-site detection of pathogens using a combination of ultra-fast convection polymerase chain reaction (cPCR), which does not require regular electricity, and nucleic acid lateral flow (NALF) immunoassay. Salmonella species was used as the model pathogen. DNA was amplified within 21 minutes (equivalent to 30 cycles of polymerase chain reaction) using ultra-fast cPCR, and the amplified DNA was detected within approximately 5 minutes using NALF immunoassay with nucleic acid detection (NAD) cassettes. In order to avoid false-positive results with NAD cassettes, we reduced the primer concentration or ultra-fast cPCR run time. For singleplex ultra-fast cPCR, the primer concentration needed to be lowered to $3{\mu}M$ or the run time needed to be reduced to 14 minutes. For duplex ultra-fast cPCR, $2{\mu}M$ of each primer set needed to be used or the run time needed to be reduced to 14 minutes. Under the conditions optimized in this study, the combination of ultra-fast cPCR and NALF immunoassay can be applied to on-site detection of pathogens. The combination can be easily applied to the detection of oral pathogens.

Taxonomic Study of Poorly-known Marine Pleurostomatid Ciliates of Litonotus paracygnus and L. pictus (Ciliophora: Pleurostomatida) from Korea

  • Kim, Se-Joo;Min, Gi-Sik
    • Animal Systematics, Evolution and Diversity
    • /
    • v.25 no.2
    • /
    • pp.167-178
    • /
    • 2009
  • Two poorly known and often confused pleurostomatid ciliates, Litonotus paracygnus Song, 1994 and L. pictus Gruber, 1884, were collected from the coastal waters of Yeonggeumjeong and Bongpo-port, Gangwondo in the East Sea and from the Iwon tide embankment near Ganwol-do, Chungcheongnam-do in the Yellow Sea, Korea. These species were described based on live observations, the protargol-impregnation and morphometrics of the species. Also provided are their diagnoses. The small subunit ribosomal DNA (SSU rDNA) sequences of these species were compared with previously known sequences of related species. The diagnostics of the two Litonotus species are as follows. L. paracygnus: 150-300 $\mu$m long in vivo, strongly contractile neck region, two ellipsoid macronuclei (Ma) and one micronucleus (Mi), 7 left (LSK) and 11-14 right somatic kineties (RSK), 2-4 contractile vacuoles (CV) located on the posterior end, extrusemes (Ex) distributed on the anterior region of the ventral margin only. L. pictus: about 200-600 $\mu$m long in vivo, extremely contractile, beautiful body color with rows of yellow to yellow-brownish cortical pigment granules, 12-21 Ma arranged in moniliform pattern, infrequently vermiform, 7-11 LSK and 18-26 RSK, several CV located on both margins, Ex distributed on the anterior region of the ventral margin only. In this study, this genus was firstly recorded in Korea.

Development of DNA Hybridization Detection Sensors and Analysis of Characteristics Using Electrochemical methods (전기화학법을 이용한 DNA Hybridization 검출 센서의 개발 및 특성 해석)

  • Ock, Jin-Young;Kim, Do-Kyun;Chang, Jeong-Soo;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.260-262
    • /
    • 2002
  • The determination of DNA hybridization can apply the molecular biology research. clinic diagnostics. bioengineering, environment monitoring, food science and other application area. So, The determination of hybridization is very important for the improvement of DNA detection system. In this study, we report the characterization of the DNA hybridization by the electricalchemical methods. The probe oligonucleotide was used to determine the amount of target oligonucleotide in solution using Methylen Blue(MB) as the electrochemical indicators. The cathodic peak currents($I_{peak}$) of MB were linearly related to the concentration of the target oligonucleotide sequence in the range $1[{\mu}M]{\sim}0.1[{\mu}M]$. The detection limit of this approach was 0.01[nM]. As a result, the match oligonucleotide(CR-1) was most stable state and the peak of redox current measured by DNA hybridization detection sensors by using electrochemical method seem to be similar to 1-mer terminal mismatch oligonucleotide(MR-3). The MR-2, MR-3, MR-22 and MR-33 have each mismatching sequence of central and terminal. With this set the role of point mutations was to be investigated. Terminal mismatch oligonucleotide (MR-3, 33) is shown more stable state than central mismatch oligonucleotide(MR-2, 22). And 1-mer mismatch oligonucleotide(MR-2 or 3) is shown more stable state than 2-mer mismatch oligonucleotide(MR-22 or 33).

  • PDF

Massive Parallel Sequencing for Diagnostic Genetic Testing of BRCA Genes - a Single Center Experience

  • Ermolenko, Natalya A;Boyarskikh, Uljana A;Kechin, Andrey A;Mazitova, Alexandra M;Khrapov, Evgeny A;Petrova, Valentina D;Lazarev, Alexandr F;Kushlinskii, Nikolay E;Filipenko, Maxim L
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.17
    • /
    • pp.7935-7941
    • /
    • 2015
  • The aim of this study was to implement massive parallel sequencing (MPS) technology in clinical genetics testing. We developed and tested an amplicon-based method for resequencing the BRCA1 and BRCA2 genes on an Illumina MiSeq to identify disease-causing mutations in patients with hereditary breast or ovarian cancer (HBOC). The coding regions of BRCA1 and BRCA2 were resequenced in 96 HBOC patient DNA samples obtained from different sample types: peripheral blood leukocytes, whole blood drops dried on paper, and buccal wash epithelia. A total of 16 random DNA samples were characterized using standard Sanger sequencing and applied to optimize the variant calling process and evaluate the accuracy of the MPS-method. The best bioinformatics workflow included the filtration of variants using GATK with the following cut-offs: variant frequency >14%, coverage ($>25{\times}$) and presence in both the forward and reverse reads. The MPS method had 100% sensitivity and 94.4% specificity. Similar accuracy levels were achieved for DNA obtained from the different sample types. The workflow presented herein requires low amounts of DNA samples (170 ng) and is cost-effective due to the elimination of DNA and PCR product normalization steps.