• 제목/요약/키워드: DNA chips

검색결과 82건 처리시간 0.033초

Real-Time Detection of DNA Hybridization Assay by Using Evanescent Field Microscopy

  • Kim, Do-Kyun;Choi, Yong-Sung;Murakami, Yuji;Tamiya, Eiichi;Kwon, Young-Soo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제11C권3호
    • /
    • pp.85-90
    • /
    • 2001
  • The determination of DNA hybridization reaction can apply the molecular biology research, clinic diagnostics, bioengineering, environment monitoring, food science and other application area. So, the improvement of DNA detection system is very important for the determination of this hybridization reaction. In this study, we report the characterization of the probe and target oligonucleotide hybridization reaction using the evanescent field microscopy. First, we have fabricated DNA chip microarray. The particles which were immobilized oligonucleotides were arranged by the random fluidic self-assembly on the pattern chips, using hydrophobic interaction. Second, we have detected DNA hybridization reaction using evanescent field microscopy. The 5'-biotinylated probe oligonucleotides were immobilized on the surface of DNA chip microarray and the hybridization reaction with the Rhodamine conjugated target oligonucleotide was excited fluorescence generated on the evanescent field microscopy. In the foundation of this result, we could be employed as the basis of a probe olidonucleotide, capable of detecting the target oligonucleotide and monitoring it in a large analyte concentration range and various mismatching condition.

  • PDF

Development of a Microarrayer for DNA Chips

  • Kim Sang Bong;Jeong Nam Soo;Kim Suk Yeol;Lee Myung Suk
    • Fisheries and Aquatic Sciences
    • /
    • 제5권1호
    • /
    • pp.36-42
    • /
    • 2002
  • Microarrayer is used to make DNA chip and microarray that contain hundreds to thousands of immobilized DNA probes on surface of a microscope slide. This paper shows the develop-ment results for a printing type of microarrayer. It realizes a typical, low-cost and efficient microarrayer for generating low density micro array. The microarrayer is developed by using a prependicular type robot with three axes. It is composed of a computer-controlled three-axes robot and a pen tip assembly. The key component of the arrayer is the print-head containing the tips to immobilize cDNA, genomic DNA or similar biological material on glass surface. The robot is designed to automatically collect probes from two 96-well plates with up to 12 pens at the same time. To prove the performance of the developed microarrayer, we use the general water types of inks such as black, blue and red. The inks are distributed at proper positions of 96 well plates and the three color inks are immobilized on the slide glass under the operation procedure. As the result of the test, we can see that it has sufficient performance for the production of low integrated DNA chip consisted of 96 spots within $1cm^2$ area.

온-오프 형태의 DNA 마이크로어레이 영상 분석을 위한 비선형 정합도 (Nonlinear matching measure for the analysis of on-off type microarray image)

  • 류문호;김종대
    • 한국통신학회논문지
    • /
    • 제30권3C호
    • /
    • pp.112-118
    • /
    • 2005
  • 본 논문에서는 교잡반응된 스팟을 템플릿 정합법으로 감지하는 온-오프 형태의 DNA 마이크로어레이 영상의 자동분석을 위한 새로운 비선형 정합도를 제안한다. HPV DNA 칩의 목표 스팟은 인유두종 바이러스(HPV)의 종을 알아내기 위해서 설계된다. 제안하는 척도는 전체 템플릿 영역을 이진 문턱값으로 양극화하여 스팟 영역 내의 밝은 화소의 개수를 취해서 얻는다. 이 척도를 추정된 마커 위치의 정확도 관점에서 평가하여 정규화된 상관도보다 우수함을 보인다.

담체자기조직화법에 의한 고집적 DNA 어레이형 마이크로칩의 개발 (Development of High-Intergrated DNA Array on a Microchip by Fluidic Self-assembly of Particles)

  • 김도균;최용성;권영수
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권7호
    • /
    • pp.328-334
    • /
    • 2002
  • The DNA chips are devices associating the specific recognition properties of two DNA single strands through hybridization process with the performances of the microtechnology. In the literature, the "Gene chip" or "DNA chip" terminology is employed in a wide way and includes macroarrays and microarrays. Standard definitions are not yet clearly exposed. Generally, the difference between macro and microarray concerns the number of active areas and their size, Macroarrays correspond to devices containing some tens spots of 500$\mu$m or larger in diameter. microarrays concern devices containing thousnads spots of size less than 500$\mu$m. The key technical parameters for evaluating microarray-manufacturing technologies include microarray density and design, biochemical composition and versatility, repreducibility, throughput, quality, cost and ease of prototyping. Here we report, a new method in which minute particles are arranged in a random fashion on a chip pattern using random fluidic self-assembly (RFSA) method by hydrophobic interaction. We intend to improve the stability of the particles at the time of arrangement by establishing a wall on the chip pattern, besides distinction of an individual particle is enabled by giving a tag structure. This study demonstrates the fabrication of a chip pattern, immobilization of DNA to the particles and arrangement of the minute particle groups on the chip pattern by hydrophobic interaction.ophobic interaction.

Rank-Based Nonlinear Normalization of Oligonucleotide Arrays

  • Park, Peter J.;Kohane, Isaac S.;Kim, Ju Han
    • Genomics & Informatics
    • /
    • 제1권2호
    • /
    • pp.94-100
    • /
    • 2003
  • Motivation: Many have observed a nonlinear relationship between the signal intensity and the transcript abundance in microarray data. The first step in analyzing the data is to normalize it properly, and this should include a correction for the nonlinearity. The commonly used linear normalization schemes do not address this problem. Results: Nonlinearity is present in both cDNA and oligonucleotide arrays, but we concentrate on the latter in this paper. Across a set of chips, we identify those genes whose within-chip ranks are relatively constant compared to other genes of similar intensity. For each gene, we compute the sum of the squares of the differences in its within-chip ranks between every pair of chips as our statistic and we select a small fraction of the genes with the minimal changes in ranks at each intensity level. These genes are most likely to be non-differentially expressed and are subsequently used in the normalization procedure. This method is a generalization of the rank-invariant normalization (Li and Wong, 2001), using all available chips rather than two at a time to gather more information, while using the chip that is least likely to be affected by nonlinear effects as the reference chip. The assumption in our method is that there are at least a small number of non­differentially expressed genes across the intensity range. The normalized expression values can be substantially different from the unnormalized values and may result in altered down-stream analysis.

Automatic Reading System for On-off Type DNA Chip

  • Ryu, Mun-Ho;Kim, Jong-Dae;Kim, Jong-Won
    • Journal of Information Processing Systems
    • /
    • 제2권3호
    • /
    • pp.189-193
    • /
    • 2006
  • In this study we propose an automatic reading system for diagnostic DNA chips. We define a general specification for an automatic reading system and propose a possible implementation method. The proposed system performs the whole reading process automatically without any user intervention, covering image acquisition, image analysis, and report generation. We applied the system for the automatic report generation of a commercialized DNA chip for cervical cancer detection. The fluorescence image of the hybridization result was acquired with a $GenePix^{TM}$ scanner using its library running in HTML pages. The processing of the acquired image and the report generation were executed by a component object module programmed with Microsoft Visual C++ 6.0. To generate the report document, we made an HWP 2002 document template with marker strings that were supposed to be searched and replaced with the corresponding information such as patient information and diagnosis results. The proposed system generates the report document by reading the template and changing the marker strings with the resultant contents. The system is expected to facilitate the usage of a diagnostic DNA chip for mass screening by the automation of a conventional manual reading process, shortening its processing time, and quantifying the reading criteria.

세포칩 기술과 응용 (Technology and Application of Cells on Chips)

  • 김창범;송기봉
    • 전자통신동향분석
    • /
    • 제26권3호
    • /
    • pp.95-104
    • /
    • 2011
  • 셀칩(cells on chips)이란, MEMs/NEMs 응용분야 중 생명공학과 관련된 세포분야로의 응용에 이용되는 대표적인 기술로서 현재 전세계에서 경쟁적으로 연구, 개발되고 있다. 셀칩은 생체내부에서 세포가 성장하는 공간적(spatial), 시간적(temporal) 조건을 정교하게 모사(mimicking)함으로써, 복잡한 생화학적 생체 내(in vivo) 환경을 이해할 수 있는 새로운 기회를 창조하고 있다. 또한 셀칩과 다양한 형태의 분석용 센서와의 결합된 시스템을 통하여, 세포기반 질병진단 시스템의 소형화 및 조기진단 시스템 개발을 위한 바이오멤스 핵심 플랫폼 기술로 인식되고 있다. 즉 DNA, 단백질, 세포 등의 바이오 물질을 마이크로/나노시스템 위에서 검출 및 분석함으로써 극미량의 생체물질을 실시간 고감도 분석이 가능하게 할 것이다. 본 고에서는 셀칩분야의 기술 및 응용에 관해 정리하고 있다.

  • PDF

Surface Polarity Dependent Solid-state Molecular Biological Manipulation with Immobilized DNA on a Gold Surface

  • Lee, Jiyoung;Kim, Jeong Hee
    • International Journal of Oral Biology
    • /
    • 제37권4호
    • /
    • pp.181-188
    • /
    • 2012
  • As the demand for large-scale analysis of gene expression using DNA arrays increases, the importance of the surface characterization of DNA arrays has emerged. We compared the efficiency of molecular biological applications on solid-phases with different surface polarities to identify the most optimal conditions. We employed thiol-gold reactions for DNA immobilization on solid surfaces. The surface polarity was controlled by creating a self-assembled monolayer (SAM) of mercaptohexanol or hepthanethiol, which create hydrophilic or hydrophobic surface properties, respectively. A hydrophilic environment was found to be much more favorable to solid-phase molecular biological manipulations. A SAM of mercaptoethanol had the highest affinity to DNA molecules in our experimetns and it showed greater efficiency in terms of DNA hybridization and polymerization. The optimal DNA concentration for immobilization was found to be 0.5 ${\mu}M$. The optimal reaction time for both thiolated DNA and matrix molecules was 10 min and for the polymerase reaction time was 150 min. Under these optimized conditions, molecular biology techniques including DNA hybridization, ligation, polymerization, PCR and multiplex PCR were shown to be feasible in solid-state conditions. We demonstrated from our present analysis the importance of surface polarity in solid-phase molecular biological applications. A hydrophilic SAM generated a far more favorable environment than hydrophobic SAM for solid-state molecular techniques. Our findings suggest that the conditions and methods identified here could be used for DNA-DNA hybridization applications such as DNA chips and for the further development of solid-phase genetic engineering applications that involve DNA-enzyme interactions.

Learning Graphical Models for DNA Chip Data Mining

  • Zhang, Byoung-Tak
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2000년도 International Symposium on Bioinformatics
    • /
    • pp.59-60
    • /
    • 2000
  • The past few years have seen a dramatic increase in gene expression data on the basis of DNA microarrays or DNA chips. Going beyond a generic view on the genome, microarray data are able to distinguish between gene populations in different tissues of the same organism and in different states of cells belonging to the same tissue. This affords a cell-wide view of the metabolic and regulatory processes under different conditions, building an effective basis for new diagnoses and therapies of diseases. In this talk we present machine learning techniques for effective mining of DNA microarray data. A brief introduction to the research field of machine learning from the computer science and artificial intelligence point of view is followed by a review of recently-developed learning algorithms applied to the analysis of DNA chip gene expression data. Emphasis is put on graphical models, such as Bayesian networks, latent variable models, and generative topographic mapping. Finally, we report on our own results of applying these learning methods to two important problems: the identification of cell cycle-regulated genes and the discovery of cancer classes by gene expression monitoring. The data sets are provided by the competition CAMDA-2000, the Critical Assessment of Techniques for Microarray Data Mining.

  • PDF

DNA microarray를 이용한 항진균 활성세균 Bacillus lentimorbus WJ5의 유전자 발현 분석 (DNA Microarray Analysis of Gene Expression in Antifungal Bacterium of Bacillus lentimorbus WJ5)

  • 이영근;김재성;장유신;조규성;장화형
    • 미생물학회지
    • /
    • 제39권3호
    • /
    • pp.141-147
    • /
    • 2003
  • 여러 항진균 활성 관련 유전자들의 발현 수준을 동시에 연구하기 위하여 DNA microarray를 이용하여 유전자들의 발현 패턴을 비교 분석하였다. 본 연구에서는 항진균활성을 가지는Bacillus lentimorbus WJ5의 genomic DNA를 무작위 하게 제한효소로 절단하여 2,000개의 DNA단편을 microarray하였으며, 감마선($^{60}Co$)조사로 유도된 7종의 항진균 활성 결핍 돌연변이체와 발현양상을 정량적으로 비교하였다. Gene Cluster (Michael Risen, Stanford Uniy.)를 이용한 DNA microarray의 분석 결과, 총 408개의 DNA 단편이 발현되는 것을 확인할 수 있었으며, 이들 중 20개의 DNA단편이 항진균 활성 결핍 돌연변이체에서 발현이 억제되는 것으로 나타났다. 특히,pbuX (xanthine permease, K222), ywbA (phosphotransferase system enzyme II, K393), ptsG (PTS glucose specific enzyme II ABC component, K877), yufO (ABC transporter(ATP-binding protein), K1301), 그리고 ftsY (signal recognition particle (docking protein), K868)는 모든 돌연변이체에서 동시에 발현되는 down-regulation된 유전자들로서 물질 이동과 관련된 것으로 보고되어 있으며, 항진균 활성 관련 신호 및 물질의 이동에 관여할 것으로 사료되어진다.