Browse > Article

Rank-Based Nonlinear Normalization of Oligonucleotide Arrays  

Park, Peter J. (Children's Hospital Informatics Program, Children's Hospital, Harvard Medical School)
Kohane, Isaac S. (Children's Hospital Informatics Program, Children's Hospital, Harvard Medical School)
Kim, Ju Han (SNUBI: Seoul National University Biomedical Informatics, Seoul National University College of Medicine)
Abstract
Motivation: Many have observed a nonlinear relationship between the signal intensity and the transcript abundance in microarray data. The first step in analyzing the data is to normalize it properly, and this should include a correction for the nonlinearity. The commonly used linear normalization schemes do not address this problem. Results: Nonlinearity is present in both cDNA and oligonucleotide arrays, but we concentrate on the latter in this paper. Across a set of chips, we identify those genes whose within-chip ranks are relatively constant compared to other genes of similar intensity. For each gene, we compute the sum of the squares of the differences in its within-chip ranks between every pair of chips as our statistic and we select a small fraction of the genes with the minimal changes in ranks at each intensity level. These genes are most likely to be non-differentially expressed and are subsequently used in the normalization procedure. This method is a generalization of the rank-invariant normalization (Li and Wong, 2001), using all available chips rather than two at a time to gather more information, while using the chip that is least likely to be affected by nonlinear effects as the reference chip. The assumption in our method is that there are at least a small number of non­differentially expressed genes across the intensity range. The normalized expression values can be substantially different from the unnormalized values and may result in altered down-stream analysis.
Keywords
gene expression; microarray normal; Edtion; rank statistic;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chudin, E, Walker, R., Kosaka, A, Wu,S. X., Rabert, D., Chang, T. K., and Kreder, D. E (2001). The relationship between signal intensities and transcript concentration for affymetrix genechips. Genome Biology3, research 0005.1-0005.10
2 Collins, F. S. (1999). Microarrays and macroconsequences. Nature Genetics 21 (Supp), 2   DOI
3 DeRisi, J. L., Iyer, V. R., and Brown, P. O. (1997). Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680-686   DOI   PUBMED   ScienceOn
4 Tseng, G. C., Oh, M., Rohlin, L., Liao, J. C., and Wong, W. H. (2001). Issues in eDNA microarray analysis: quality filtering, channel normalization, models of variation and assessment of geneeffects. NucleicAcidsResearch 29,2549-2557
5 Workman, C., Jensen, L. J., Jarmer, H., Berka, R., Gautier, L., Nielsen, H. B., Saxild, H. H., Nielsen, C., Brunak, S., and Knudsen, S. (2002). A new non-linear normalization method for reducing variability in DNA microarray experiments. Genome Biology3, research0048.1-0048.16
6 Hartemink, A J., Gifford, D. K., Jaakkola, T. S., and Young, R.A. (2001). Maximum likelihood estimation of optimal scaling factors for expression arraynormalization. In SPIE BiOS 2001
7 Cho, R. J., Campbell, M. J., Winzeler, E. A. et al. (1998). A genome-wide transcriptional analysis of the mitotic cell cycle. Molecular Cell2, 65-73   DOI   ScienceOn
8 Lockhart, D. J., Dong, H., Byme, M. C., Follettie, M. T, GalloM. V., Chee, M. S., Mittmann, M., Want, C., Kobayashi, M., Horton, H., and Brown, E. L. (1996). DNA expression monitoring by hybridization of high density oligonucleotide arrays. Nature Biotechnology 14, 1675-1680   DOI   ScienceOn
9 Shmulevich, I. and Zhang, W. (2002). Binary analysis and optimization-based normalization of gene expression data. Bioinformatics 18, 555-565   DOI   ScienceOn
10 Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatterplots. Joumal of the American Statistical Association 74, 829-836   DOI   ScienceOn
11 Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A, Bloomfield, C. D., and Lander, E S. (1999). Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286, 531-537   DOI   PUBMED   ScienceOn
12 Li, C. and Wong, W. H. (2001). Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biology 2, research 0032.1-0032.11
13 Hill, A. A., Brown, E. L., Whitley, M. Z., Tucker-Kellogg, G., Hunter, C. P., and Slonim, D. K. (2001). Evaluation of normalization procedures for oligonucleotide array data based on spiked cRNA controls. Genome Biology 2, research 0055.1-research 0055.13
14 Kepler, T B., Crosby, L., and Morgan, K.T (2002). Normalization and analysis of DNA microarray data by self-consistency and local regression. Genome Biology3, research 0037.1-0037.12
15 Kroll, T. C. and Wolfl, S. (2002). Ranking: a closer look on globalisation methods for normalisation of gene expression arrays. Nucleic Acids Research 30, e50-e55   DOI   PUBMED   ScienceOn
16 Hoffmann, R., Seidl, T, and Dugas, M. (2002). Profound effect of normalization on detection of differentially expressed genes in oligonucleotide microarray data analysis. Genome Biology 3, research 0033.1-0033.11
17 Yang, Y. H., Dudoit, S., Luu, P., and Speed T. P. (2001). Normalization for eDNA microarray data. Technical Report 589, Statistics Dept, UC Berkeley
18 Yang, Y. H., Dudoit, S., Luu, P., Lin, D. M., Peng, V., Ngai, J., and Speed, T.P. (2002). Normalization for edna microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic AcidsResearch 30,e15   DOI   ScienceOn
19 Alizadeh, A A., Eisen, M. B., Davis, R. E, Ma, C., Lossos, I. S., Rosenwald, A, Boldrick, J. G., Sabet, H.,Tran, T, Yu, X. et al. (2000). Distinct types of diffuse large B-cell lymphoma identified bygeneexpression profiling. Nature 403, 503-511   DOI   ScienceOn
20 Ramdas, L., Coombes, K. R., Baggerly, K., Abruzzo, L., Highsmith, W. E, Krogmann, T., Hamilton, S. R., and Zhang, W. (2001). Sources of nonlinearity in eDNA microarray expression measurements. Genome Biology 2, research 0047.1-0047.7
21 Quackenbush, J. (2002). Microarray data normalization and transformation. NatGenetSuppl,496-501