• Title/Summary/Keyword: DNA binder

Search Result 11, Processing Time 0.021 seconds

Genome Detection Using Hoechst 33258 Groove Binder (Hoechst 33258 Groove Binder를 이용한 DNA칩)

  • Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.372-373
    • /
    • 2006
  • In this paper, a DNA chip with a microelectrode array was fabricated using microfabrication technology. Several probe DNAs consisting of mercaptohexyl moiety at their 5 end were immobilized on the gold electrodes by DNA arrayer. Then target DNAs were hybridized and reacted with Hoechst 33258, which is a DNA minor groove binder and electrochemically active dye. Linear sweep voltammetry or cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. It was derived from Hoechst 33258 concentrated at the electrode surface through association with formed hybrid. It suggested that this DNA chip could recognize the sequence specific genes.

  • PDF

Electrochemical Gene Detection Using Hoechat Groove Binder (Hoechst groove binder를 이용한 유전자의 전기화학적 검출)

  • Choi, Yong-Sung;Lee, Woo-Ki;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.65-70
    • /
    • 2006
  • In this study, a DNA chip with a microelectrode array was fabricated using microfabrication technology. Several probe DNAs consisting of mercaptohexyl moiety at their 5 end were immobilized on the gold electrodes by DNA arrayer. Then target DNAs were hybridized and reacted with Hoechst 33258, which is a DNA minor groove binder and electrochemically active dye. Linear sweep voltammetry or cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. It was derived from Hoechst 33258 concentrated at the electrode surface through association with formed hybrid. It suggested that this DNA chip could recognize the sequence specific genes.

  • PDF

Electrochemical Gene Detection Using Microelectrode Array on a DNA Chip

  • Park, Yong-Sung;Kwon, Young-Soo;Park, Dae-Hee
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.4
    • /
    • pp.145-148
    • /
    • 2004
  • In this study, a DNA chip with a microelectrode array was fabricated using microfabrication technology. Several probe DNAs consisting of mercaptohexyl moiety at their 5' end were immobilized on the gold electrodes by a DNA arrayer. Then target DNAs were hybridized and reacted with Hoechst 33258, which is a DNA minor groove binder and electrochemically active dye. Linear sweep voltammetry or cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. It was derived from Hoechst 33258 and concentrated at the electrode surface through association with the formed hybrid. This suggested that this DNA chip could recognize the sequence specific genes.

Eletrochemical Detection of Gene using Microelectrode-array DNA Chip (미소전극어레이형 DNA칩을 이용한 유전자의 전기화학적 검출)

  • ;;Eiichi Tamiya
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.729-737
    • /
    • 2004
  • In this paper, a DNA chip with a microelectrode array was fabricated using microfabrication technology. Several probe DNAs consisting of mercaptohexyl moiety at their 5 end were immobilized on the gold electrodes by DNA arrayer. Then target DNAs were hybridized and reacted with Hoechst 33258, which is a DNA minor groove binder and electrochemically active dye. Linear sweep voltammetry or cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. It was derived from Hoechst 33258 concentrated at the electrode surface through association with formed hybrid. It suggested that this DNA chip could recognize the sequence specific genes.

Electrochemical Detection of Genes Using Microeledtrode Array DNA Chip (미소전극어에이형 DNA칩을 이용한 유전자의 전기화학적 검출)

  • Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.2125-2127
    • /
    • 2004
  • In this paper, a DNA chip with a microelectrode array was fabricated using microfabrication technology. Several probe DNAs consisting of mercaptohexyl moiety at their 5 end were immobilized on the gold electrodes by DNA arrayer. Then target DNAs were hybridized and reacted with Hoechst 33258, which is a DNA minor groove binder and electrochemically active dye. Linear sweep voltammetry or cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. It was derived from Hoechst 33258 concentrated at the electrode surface through association with formed hybrid. It suggested that this DNA chip could recognize the sequence specific genes.

  • PDF

Simple Screening Method for Double-strand DNA Binders Using Hairpin DNA-modified Magnetic Beads

  • Jo, Hun-Ho;Min, Kyoung-In;Song, Kyung-Mi;Ku, Ja-Kang;Han, Min-Su;Ban, Chang-Ill
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.247-250
    • /
    • 2011
  • We designed an effective screening method for double strand DNA (dsDNA) binders using DNA-modified magnetic particles. Hairpin DNA was immobilized on the surface of magnetic particle for a simple screening of dsDNA binding materials in a solution containing various compounds. Through several magnetic separation and incubation processes, four DNA-binding materials, DAPI, 9AA, AQ2A, and DNR, were successfully screened from among five candidates. Efficiency of screening was demonstrated by HPLC analysis using a C2/18 reverse-phase column. In addition, their relative binding strengths were verified by measuring the melting temperature ($T_m$). If hairpin DNA sequence is modified for other uses, this magnetic bead-based approach can be applied as a high-throughput screening method for various functional materials such as anti-cancer drugs.

Synthesis and DNA-binding Properties of Trehalose-tethered Monomeric and Dimeric Berberines

  • Wang, Yong-Min;Zhou, Chun-Qiong;Chen, Jin-Xiang;Chen, Wen-Hua
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.749-752
    • /
    • 2013
  • Trehalose-tethered monomeric and dimeric berberines were synthesized in 50% and 30% from the reaction of berberrubine with 6-tosyl-${\alpha}$,${\alpha}^{\prime}$-trehalose and 6,6'-ditosyl-${\alpha}$,${\alpha}^{\prime}$-trehalose, respectively, and fully characterized by MS (HR and ESI) and NMR ($^1H$, $^{13}C$, COSY and HSQC). Spectrophotometric and spectrofluorimetric titrations indicated that compared with berberine, trehalose-tethered monomeric berberine had comparable DNA-binding affinity toward calf-thymus DNA, whereas trehalose-spaced dimeric berberine exhibited higher DNA-binding affinity. The potential application of these conjugates is also briefly discussed.

Genomic Detection using Electrochemical Method (전기화학적 방법에 의한 유전자의 검출)

  • Choi, Yong-Sung;Lee, Kyung-Sup;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.6
    • /
    • pp.560-570
    • /
    • 2005
  • In this paper, a microelectrode away DNA chip was fabricated on glass slide using photolithography technology. Several probe DNAs consisting of mercaptohexyl moiety at their 5' end were immobilized on the gold electrodes by DNA arrayer utilizing the affinity between gold and sulfu. Then target DNAs were hybridized and reacted with Hoechst 33258, which is a DNA minor groove binder and electrochemically active dye. Cyclic voltammetry in 5mA ferricyanide/ferrocyanide solution at 100 mV/s confirmed the immobilization of probe DNA on the gold electrodes. Linear sweep voltammetry or cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. It was derived from Hoechst 33258 concentrated at the electrode surface through association with formed hybrid. It suggested that this DNA chip could recognize the sequence specific genes. It suggested that multichannel electrochemical DNA microarray is useful to develop a portable device for clinical gene diagnostic system.

Structural, Electrochemical, DNA Binding and Cleavage Properties of Nickel(II) Complex [Ni(H2biim)2(H2O)2]2+ of 2,2'-Biimidazole

  • Jayamani, Arumugam;Thamilarasan, Vijayan;Ganesan, Venketasan;Sengottuvelan, Nallathambi
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3695-3702
    • /
    • 2013
  • A nickel(II) complex $[Ni(H_2biim)_2(H_2O)_2](ClO_4)_2{\cdot}H_2O$ (1) of biimidazole ligand has been synthesized and characterized (Where $H_2biim$ = 2,2'-biimidazole). The single crystal X-ray diffraction of the complex shows a dimeric structure with six coordinated psudo-octahedral geometry. The cyclic voltammograms of complex exhibited one quasireversible reduction wave ($E_{pc}=-0.61V$) and an irreversible oxidation wave ($E_{pa}=1.28V$) in DMF solution. The interaction of the complex with Calf-Thymus DNA (CT-DNA) has been investigated by absorption and fluorescence spectroscopy. The complex is an avid DNA binder with a binding constant value of $1.03{\times}10^5M^{-1}$. The results suggest that the nickel(II) complex bind to CT-DNA via intercalative mode and can quench the fluorescence intensity of EB bind to CT-DNA with $K_{app}$ value of $3.2{\times}10^5M^{-1}$. The complex also shown efficient oxidative cleavage of supercoiled pBR322 DNA in the presence of hydrogen peroxide as oxidizing agent. The DNA cleavage by complex in presence of quenchers; viz. DMSO, KI, $NaN_3$ and EDTA reveals that hydroxyl radical or singlet oxygen mechanism is involved. The complex showed invitro antimicrobial activity against four bacteria and two fungi. The antimicrobial activity was nearer to that of standard drugs and greater than that of the free ligand.

Anticancer Activity of Indeno[1,2-b]-Pyridinol Derivative as a New DNA Minor Groove Binding Catalytic Inhibitor of Topoisomerase IIα

  • Jeon, Kyung-Hwa;Shrestha, Aarajana;Jang, Hae Jin;Kim, Jeong-Ahn;Sheen, Naeun;Seo, Minjung;Lee, Eung-Seok;Kwon, Youngjoo
    • Biomolecules & Therapeutics
    • /
    • v.29 no.5
    • /
    • pp.562-570
    • /
    • 2021
  • Topoisomerase IIα has been a representative anti-cancer target for decades thanks to its functional necessity in highly proliferative cancer cells. As type of topoisomerase IIα targeting drugs, topoisomerase II poisons are frequently in clinical usage. However, topoisomerase II poisons result in crucial consequences resulted from mechanistically induced DNA toxicity. For this reason, it is needed to develop catalytic inhibitors of topoisomerase IIα through the alternative mechanism of enzymatic regulation. As a catalytic inhibitor of topoisomerase IIα, AK-I-191 was previously reported for its enzyme inhibitory activity. In this study, we clarified the mechanism of AK-I-191 and conducted various types of spectroscopic and biological evaluations for deeper understanding of its mechanism of action. Conclusively, AK-I-191 represented potent topoisomerase IIα inhibitory activity through binding to minor groove of DNA double helix and showed synergistic effects with tamoxifen in antiproliferative activity.