• Title/Summary/Keyword: DNA barcodes

Search Result 56, Processing Time 0.028 seconds

DNA barcoding for fish species identification and diversity assessment in the Mae Tam reservoir, Thailand

  • Dutrudi Panprommin;Kanyanat Soontornprasit;Siriluck Tuncharoen;Santiwat Pithakpol;Korntip Kannika;Konlawad Wongta
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.9
    • /
    • pp.548-557
    • /
    • 2023
  • The purposes of this research were to identify fish species using DNA barcodes or partial sequences of cytochrome b (Cytb) and to assess the diversity of fish in the Mae Tam reservoir, Phayao province, Thailand. Fish samples were collected 3 times, during the winter, summer, and rainy seasons, from 2 sampling sites using gillnets with 3 mesh sizes (30, 50, and 70 mm). A total of 34 representative samples were classified into 12 species, 7 families and 6 orders by morphological- and DNA barcoding-based identifications. However, one cichlid species, Cichlasoma trimaculatum, could only be identified using DNA barcoding. Family Cyprinidae had the greatest diversity, 50.00%. The diversity, richness and evenness indices ranged from 0.43-0.65, 0.64-1.46, and 0.27-0.40, respectively, indicating that fish diversity at both sampling sites was relatively low. A comparison of the catch per unit effort (CPUE) with 3 different mesh sizes found that the 50 mm mesh size was the best (474.80 ± 171.56 g/100 m2/night), followed by the 70 mm (417.41 ± 176.24 g/100 m2/night) and 30 mm mesh sizes (327.88 ± 115.60 g/100 m2/night). These results indicate that DNA barcoding is a powerful tool for species identification. Our data can be used for planning the sustainable management of fisheries resources in the Mae Tam reservoir.

Identification of Marker Nucleotides for the Molecular Authentication of Araliae Continentalis Radix Based on the Analysis of Universal DNA Barcode, matK and rbcL, Sequences (범용성 DNA 바코드(matK, rbcL) 분석을 통한 독활(獨活) 유전자 감별용 Marker Nucleotide 발굴)

  • Kim, Wook Jin;Yang, Sungyu;Choi, Goya;Moon, Byeong Cheol
    • The Korea Journal of Herbology
    • /
    • v.31 no.5
    • /
    • pp.15-23
    • /
    • 2016
  • Objectives : Araliae Continentalis Radix and Angelicae Pubescentis Radix have been used as the same medicinal name Korean and Chinese traditional medicines, respectively. The authentic Araliae Continentalis Radix is described only the root of Aralia continentalis in the Korean Pharmarcopoeia. However, the dried root of Angelica biserrata, Levisticum officinale, or Heracleum moellendorffii also has been distributed adulterants of Araliae Continentalis Radix. To develop a reliable method for identifying Araliae Continentalis Radix from adulterants, we carried out the analyses of universal DNA barcode sequences.Methods : Four plants species were collected from different habitate and nucleotide sequences of matK and rbcL were analyzed. The species-specific sequences and phylogenetic relationship were estimated using entire sequences of two DNA barcodes, respectively.Results : In comparative analysis of matK sequences, we were identified 104 positions of marker nucleotide for Ar. continentalis, 3 for An. biserrata, 4 for L. officinale and 8 for H. moellendorffii enough to distinguish individual species, respectively. Furthermore, we obtained marker nucleotides in rbcL at 42 positions for Ar. continentalis, 5 for An. biserrata and 2 for H. moellendorffii, but not for L. officinale. The phylogenetic tree of matK and rbcL were showed that all samples were clustered into four groups constituting homogeneous clades within the species.Conclusions : We confirmed that species-specific marker nucleotides of matK sequence provides distinct genetic information enough to identify four species. Therefore, we suggest that matK gene is useful DNA barcode for discriminating authentic Araliae Continentalis Radix from inauthentic adulterants.

Development of SCAR marker for the rapid assay of Paeng-hwal based on CO1 DNA barcode sequences (CO1 DNA 바코드 염기서열 기반 팽활(蟛螖) 신속 감별용 SCAR marker 개발)

  • Wook Jin Kim;Sumin Noh;Goya Choi;Woojong Jang;Byeong Cheol Moon
    • The Korea Journal of Herbology
    • /
    • v.39 no.2
    • /
    • pp.1-9
    • /
    • 2024
  • Objectives : Paeng-hwal is described as an insect herbal medicine used for digestive diseases in the Dong-ui-bo-gam. The origin of this herbal medicine is limited to several small crabs, such as Helice tridens. These crab species cohabitat in the same environment and share similar morphological characteristics, making it very difficult to distinguish and collect the individual species for use in dietary supplements or herbal medicines. This study was conducted to develop a genetic identification tool for discriminating among these closely related small crab species. Methods : CO1 DNA barcode regions of 15 samples from 6 species of small crabs were analyzed to obtain the individual sequences. To identify the correct species, comparative analyses were carried out using the database of the NCBI GenBank and the NIBR. SCAR primers were designed to develop simple and rapid assay methods using inter-species specific sequences. Optimal SCAR assay conditions were established through gradient PCR, and the limit of detection (LOD) was determined. Results : Six species of small crabs (Helicana tridens, Macrophthalmus abbreviatus, Helicana tientsinensis, Helicana wuana, Chiromantes dehaani, and Hemigrapsus penicillatus), which are distributed as Paeng-hwal, were identified through CO1 sequences analysis. We also developed SCAR markers to distinguish between six small crabs at the species level. Furthermore, we established the optimal PCR assay methods and the LOD of each individual species. Conclusions : The rapid and simple SCAR-PCR assay methods were developed to identify the species and control the quality of herbal medicines for Paeng-hwal based on the genetic analyses of CO1 DNA barcodes.

DNA barcoding of fish diversity from Batanghari River, Jambi, Indonesia

  • Huria Marnis;Khairul Syahputra;Jadmiko Darmawan;Dwi Febrianti;Evi Tahapari;Sekar Larashati;Bambang Iswanto;Erma Primanita Hayuningtyas Primanita;Mochamad Syaifudin;Arsad Tirta Subangkit
    • Fisheries and Aquatic Sciences
    • /
    • v.27 no.2
    • /
    • pp.87-99
    • /
    • 2024
  • Global climate change, followed by an increase in anthropogenic activities in aquatic ecosystems, and species invasions, has resulted in a decline in aquatic organism biodiversity. The Batanghari River, Sumatra's longest river, is polluted by mercury-containing illegal gold mining waste (PETI), industrial pollution, and domestic waste. Several studies have provided evidence suggesting a decline in fish biodiversity within the Batanghari River. However, a comprehensive evaluation of the present status of biodiversity in this river is currently lacking. The species under investigation were identified through various molecular-based identification methods, as well as morphological identification, which involved the use of neighbor-joining (NJ) trees. All collected specimens were initially identified using morphological techniques and subsequently confirmed with molecular barcoding analysis. Morphological and DNA barcoding identification categorized all specimens (1,692) into 36 species, 30 genera and 16 families, representing five orders. A total of 36 DNA barcodes were generated from 30 genera using a 650-bp-long fragment of the mitochondrial cytochrome oxidase subunit I (COI) gene. Based on the Kimura two-parameter model (K2P), The minimum and maximum genetic divergences based on K2P distance were 0.003 and 0.331, respectively, and the average genetic divergence within genera, families, and orders was 0.05, 0.12, 0.16 respectively. In addition, the average interspecific distance was approximately 2.17 times higher than the mean intraspecific distance. Our results showed that the COI barcode enabled accurate fish species identification in the Batanghari River. Furthermore, the present work will establish a comprehensive DNA barcode library for freshwater fishes along Batanghari River and be significantly useful in future efforts to monitor, conserve, and manage fisheries in Indonesia.

Food Fraud Monitoring of Commercial Sciaenidae Seafood Product Using DNA Barcode Information (DNA barcode를 이용한 민어과 수산가공품 진위판별 모니터링)

  • Park, Eun-Ji;Jo, Ah-Hyeon;Kang, Ju-Yeong;Lee, Han-Cheol;Park, Min-Ji;Yang, Ji-Young;Shin, Ji-Young;Kim, Gun-Do;Kim, Jong-Oh;Seo, Yong-Bae;Kim, Jung-Beom
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.6
    • /
    • pp.574-580
    • /
    • 2020
  • In this study we sought to determine the food fraud by discriminating species of commercial seafood product such as Larimichthys polyactis, Larimichthys crocea, Pennahia argentatus, and Miichthys miiuy, which are difficult to morphologically discriminate. After amplifying the mitochondrial cytochrome c oxidase subunit I gene of the reference fish, the DNA sequences of the amplified PCR products were analyzed. As a result, a 655 bp sequence for species identification was selected for use as DNA barcodes. To confirm the DNA data and primer set, the DNA barcode sequence of each fish was compared to that in that in the NCBI. All of the DNA barcode data were matched with the gene sequence of each fish in the NCBI. A total of 32 processed seafood products (8 L. polyactis, 12 L. crocea, 3 Pennahia argentatus, and 9 Miichthys miiuy) were investigated. Homology of 97% or more in DNA sequences was judged as the same species. As a result of the monitoring, there were no discovered cases of forgery or alteration. However, the use of a raw material name having no matching standard name in the Korea Food Code may cause consumer confusion. Therefore, it is suggested that the standard name or scientific name be co-labeled with the raw material name on seafood products to prevent consumer confusion.

New record of four Korean feather mites (Acari: Sarcoptiformes: Pterolichidae) isolated from the birds in the family Rallidae

  • Han, Yeong-Deok;Min, Gi-Sik
    • Journal of Species Research
    • /
    • v.6 no.spc
    • /
    • pp.152-163
    • /
    • 2017
  • Four feather mite species, Grallobia fulicae (Trouessart, 1885), Grallobia gallinulae Gaud, 1968, Grallolichus proctogamus (Trouessart, 1885) and Megniniella gallinulae (Buchholz, 1869), previously unrecorded in South Korea are reported. Specimens of Grallobia fulicae and Grallolichus proctogamus were collected from the eurasian coot, Fulica atra in Cheongju-si. Grallobia gallinulae and M. gallinulae were found on the common moorhen, Gallinula chloropus in Yesan-gun. The genera Grallobia Hull, 1934, Grallolichus Gaud, 1960 and Megniniella Gaud, 1958 are new records for South Korea. Here, we provide illustrations and morphological descriptions of these four feather mite species as well as the partial sequences of the mitochondrial cytochrome c oxidase subunit I (COI) as DNA barcodes.

New record of two Korean feather mites (Acari: Sarcoptiformes: Astigmata) isolated from water birds

  • Han, Yeong-Deok;Choe, Seongjun;Eom, Keeseon S.;Min, Gi-Sik
    • Journal of Species Research
    • /
    • v.6 no.spc
    • /
    • pp.177-184
    • /
    • 2017
  • Two feather mites, Scutomegninia phalacrocoracis Dubinin and Dubinina, 1940 and Ptiloxenus major ($M{\acute{e}}gnin$ and Trouessart, 1884) are reported for the first time in Korea. Specimens of S. phalacrocoracis and P. major were collected from the great cormorant, Phalacrocorax carbo and great crested grebe, Podiceps cristatus, respectively. The genera Scutomegninia Dubinin, 1951 and Ptiloxenus Hull, 1934 are also new reports for South Korea. Here, we provide morphological descriptions and illustrations of these two species. Additionally, we provide partial sequences of the mitochondrial cytochrome c oxidase subunit I (COI) as DNA barcodes.

New Record of Kellicottia bostoniensis and Redescription of Two Freshwater Rotifers from Korea (Rotifera: Monogononta)

  • Yang, Hee-Min;Min, Gi-Sik
    • Animal Systematics, Evolution and Diversity
    • /
    • v.36 no.3
    • /
    • pp.222-227
    • /
    • 2020
  • In this study, we identified three monogonont rotifers from South Korea: Kellicottia bostoniensis (Rousselet, 1908), Trichocerca tenuior (Gosse, 1886), and Lepadella triptera (Ehrenberg, 1830). The distribution records of K. bostoniensis were mainly located in the Nearctic, Neotropic and Western Palearctic regions. After Japan, this is the second record of it in Asia. Trichocerca tenuior and Lepadella triptera have already been recorded in Korea, but the data of two species were insufficient in previous study. Here, we describe the morphological characteristics of the three species and the trophi structures of K. bostoniensis and T. tenuior. This study is the first to characterize the trophi structure of K. bostoniensis, observed using a scanning electron microscope. In addition, we have determined the partial cytochrome c oxidase subunit 1 (COI) and 18S rRNA gene sequences of T. tenuior and L. triptera for their DNA barcodes.

MHC Multimer: A Molecular Toolbox for Immunologists

  • Chang, Jun
    • Molecules and Cells
    • /
    • v.44 no.5
    • /
    • pp.328-334
    • /
    • 2021
  • The advent of the major histocompatibility complex (MHC) multimer technology has led to a breakthrough in the quantification and analysis of antigen-specific T cells. In particular, this technology has dramatically advanced the measurement and analysis of CD8 T cells and is being applied more widely. In addition, the scope of application of MHC multimer technology is gradually expanding to other T cells such as CD4 T cells, natural killer T cells, and mucosal-associated invariant T cells. MHC multimer technology acts by complementing the T-cell receptor-MHC/peptide complex affinity, which is relatively low compared to antigen-antibody affinity, through a multivalent interaction. The application of MHC multimer technology has expanded to include various functions such as quantification and analysis of antigen-specific T cells, cell sorting, depletion, stimulation to replace antigen-presenting cells, and single-cell classification through DNA barcodes. This review aims to provide the latest knowledge of MHC multimer technology, which is constantly evolving, broaden understanding of this technology, and promote its widespread use.

Three Feather Mites (Acari: Sarcoptiformes) Isolated from Black-Tailed Godwit, Limosa limosa in Korea

  • Han, Yeong-Deok;Min, Gi-Sik
    • Animal Systematics, Evolution and Diversity
    • /
    • v.35 no.3
    • /
    • pp.105-113
    • /
    • 2019
  • Feather mites comprise two superfamilies(Analgoidea and Pterolichoidea) and are highly specialized ectosymbionts of birds. To date, this group contains more than 2,500 species worldwide. Fifty-five feather mite species have been reported in Korea, and only one species of genus Alloptes has been recorded from black-tailed godwit Limosa limosa. Three new records of feather mites from the L. limosa in Korea are added in this study: Avenzoaria punctata Gaud, 1972, Bregetovia limosae (Buchholz, 1869), and Montchadskiana buchholzi (Canestrini, 1878). The genus Bregetovia Dubinin, 1951 is also new report for this country. In this paper, we provide the morphological descriptions and illustrations based on the present specimens. Additionally, we determined partial sequences of the mitochondrial cytochrome c oxidase subunit I(COI) from three feather mites as DNA barcodes.