Food Fraud Monitoring of Commercial Sciaenidae Seafood Product Using DNA Barcode Information

DNA barcode를 이용한 민어과 수산가공품 진위판별 모니터링

  • Park, Eun-Ji (Department of Food science and Technology, Suncheon National University) ;
  • Jo, Ah-Hyeon (Department of Food science and Technology, Suncheon National University) ;
  • Kang, Ju-Yeong (Department of Food science and Technology, Suncheon National University) ;
  • Lee, Han-Cheol (Department of Food science and Technology, Suncheon National University) ;
  • Park, Min-Ji (Department of Food science and Technology, Suncheon National University) ;
  • Yang, Ji-Young (Department of Food Science and Technology, Pukyong National University) ;
  • Shin, Ji-Young (Department of Food Science and Technology, Pukyong National University) ;
  • Kim, Gun-Do (Department of Microbioligy Pukyong National University) ;
  • Kim, Jong-Oh (Institute of Marine Biotechnology, Pukyong National University) ;
  • Seo, Yong-Bae (Institute of Marine Biotechnology, Pukyong National University) ;
  • Kim, Jung-Beom (Department of Food science and Technology, Suncheon National University)
  • 박은지 (순천대학교 식품공학과) ;
  • 조아현 (순천대학교 식품공학과) ;
  • 강주영 (순천대학교 식품공학과) ;
  • 이한철 (순천대학교 식품공학과) ;
  • 박민지 (순천대학교 식품공학과) ;
  • 양지영 (부경대학교 식품공학과) ;
  • 신지영 (부경대학교 식품공학과) ;
  • 김군도 (부경대학교 미생물학과) ;
  • 김종오 (부경대학교 해양생명과학연구소) ;
  • 서용배 (부경대학교 해양생명과학연구소) ;
  • 김중범 (순천대학교 식품공학과)
  • Received : 2020.09.21
  • Accepted : 2020.10.27
  • Published : 2020.12.30


In this study we sought to determine the food fraud by discriminating species of commercial seafood product such as Larimichthys polyactis, Larimichthys crocea, Pennahia argentatus, and Miichthys miiuy, which are difficult to morphologically discriminate. After amplifying the mitochondrial cytochrome c oxidase subunit I gene of the reference fish, the DNA sequences of the amplified PCR products were analyzed. As a result, a 655 bp sequence for species identification was selected for use as DNA barcodes. To confirm the DNA data and primer set, the DNA barcode sequence of each fish was compared to that in that in the NCBI. All of the DNA barcode data were matched with the gene sequence of each fish in the NCBI. A total of 32 processed seafood products (8 L. polyactis, 12 L. crocea, 3 Pennahia argentatus, and 9 Miichthys miiuy) were investigated. Homology of 97% or more in DNA sequences was judged as the same species. As a result of the monitoring, there were no discovered cases of forgery or alteration. However, the use of a raw material name having no matching standard name in the Korea Food Code may cause consumer confusion. Therefore, it is suggested that the standard name or scientific name be co-labeled with the raw material name on seafood products to prevent consumer confusion.

본 연구에서는 민어과 수산물의 표준시료 DNA 염기서열을 분석한 후 DNA barcode 염기서열을 확정하고 검증한 후 시중 유통 중인 민어과 수산가공식품의 위변조 현황을 조사하였다. 표준시료의 미토콘드리아 cytochrome c oxidase subunit I유전자를 증폭한 후 증폭된 PCR 산물의 염기서열을 분석하였다. 분석결과 종 판별에 특이적인 655 bp를 선정하여 DNA barcode 염기서열로 하였다. DNA barcode information과 primer set을 이용한 진위판별 정확성을 확인한 결과 PCR 증폭은 모두 확인되었다. NCBI에 등록된 각각 어류의 유전자 염기서열과 비교하였을 때 참조기 100%, 부세 100%, 보구치 100%, 민어 100%의 상동성을 나타내어 실험에 사용된 DNA barcode information과 primer set의 정확성을 확인하였다. DNA barcode 시험법을 이용해 시중 유통되는 민어과 수산가공품 32건에 대해 조사한 결과 위변조 사례는 나타나지 않았다. 그러나 식품공전에 등재된 보구치 대신 백조기라는 일반명이 사용되고 있어 소비자에게 혼란을 야기하고 있었다. 따라서 수산가공품 원재료 표시에 일반명과 더불어 표준명 또는 학명을 표시하여야 할 것으로 판단되었다.


  1. Lin, X.M., Kim, K.S., Empirical Analysis on the Factors Affecting the Consumption of Aquatic Products in China Using Panel Data. J. Fish. Bus. Adm., 44(2), 019-033 (2013).
  2. Ministry of Oceans and Fisheries, (2020, January 6) Korean annual seafood consumption is 58.4 kg, which is the highest amount among OECD countries. Retrieved from¤tPageNo=1.
  3. Ministry of Food and Drug Safety, 2019, Year book of imported food inspection. Cheongju, Korea.
  4. Trend of Fisheries Import from FTA Partners, 2018, Korean Maritime Institute.
  5. Warner, K., Roberts, W., Mustain, P., Lowell, B., Swain, M., Casting a Wider Net: More Action Needed to Stop Seafood Fraud in the United States. OCEANA, DOI: 10.31230/ (2019).
  6. Kim, H.Y., Hong, K.H., Hong, J.H., Kim, D.S., Han, S.B., Lee, E.J., Lee, J.S., Kang, K.J., Chung, H.W., Song, K.H., Park, H.K., Park, J.S., Kwon, W.K., Jang, Y.M., Shin, I.S., Lee, C.K., Park H.Y., Ha, S.C. and Jo, J.S., Studies on the separation and discrimination of the natural yellow pigment on croaker. Kor. J. Food Sci. Technol., 34, 762-769 (2002).
  7. Mackie, I., Craig, A., Etienne, M., Jerome, M., Fleurence, J., Jessen, F., Smelt, A., Kruijt, A., Yman, I.M., Ferm, M., Martinez, I., Martin, R.P., Pineiro, C., Rehbein, H. and Kundiger, R. Species identification of smoked andgravid fish products by sodium dodecylsulphate polyacrylamide gel electrophoresis, urea isoelectric focusing and native isoelectric focusing: a collaborative study. Food Chem., 71, 1-7(2000).
  8. Georgina, L.H., Valerie, J.R., Susan, E.P., Hartmut, R., Javier, Q., Rodrego, V., Manuel, R.M., Carmen, G.S., Ricardo, I.P.M., Ana, T.S., Carla, R., Development of a DNA-based method aimed at identifying the fish species present in food products. J. Agric. Food Chem., 49, 1175-1179(2001).
  9. Kim, K.H., Kim, Y.S., Kim, M.R., Lee, H.Y., Jung, Y.K., Lee, J.H., Chang, H.S., Park, Y.C., Kim, S.Y., Choi, J.D., Jang, Y.M., Development of species-specific primer to determine the authenticity of vegetable raw materials in food. Food Eng. Prog., 18, 419- 426 (2014).
  10. Kang, T.S., Basic principles for developing real-time PCR methods used in food analysis: a review. Trends Food Sci. Technol., 91, 574-585 (2019).
  11. Kang, T.S., Development of four PCR-based methods to differentiate tilefish species (Branchiostegus japonicus and B. albus). Food Chem., 271, 1-8 (2019).
  12. Kang, T.S., Rapid and simple identification of two closelyrelated snow crabs (Chionoecetes opilio and C. japonicus) by direct triplex PCR. LWT-Food Sci. Technol., 99, 562-567 (2019).
  13. Kim, M.R., Kwon, K., Jung, Y.K., Kang, T.S., A rapid realtime PCR method to differentiate between mottled skate (Beringraja pulchra) and other skate and ray species. Food Chem., 255, 112-119 (2018).
  14. Handy, S.M., Deeds, J.R., Ivanova, N.V., Hebert, P.D., Hanner, R., Ormos, A., Yancy, H.F., A single-laboratory validated method for the generation of DNA barcodes for the identification of fish for regulatory compliance. J. AOAC Int., 94(1), 201-210 (2011).
  15. Noh, E.S., Lee, M.N., Kim, E.M., Park, J.Y., Noh, J.K., An, C.M., Kang, J.H., Development of a Multiplex PCR Assay for Rapid Identification of Larimichthys polyactis, L. crocea, Atrobucca nibe, and Pseudotolithus elongates. J. Life Sci., 27(7), 746-753 (2017).
  16. Lee, J.H., Seo, Y.I., Oh, T.Y. and Lee, D.W., Estimations on population ecological characteristics of small yellow croaker, Larimichthys polyactis by the drift gillnet fishery in Korean waters. J. Korea Soc. Fish Tech., 49, 440-448 (2013).
  17. Xiao, Y., Zhang, Y., Gao, T., Yanagimoto, T., Yabe, M., Sakurai, Y., Genetic diversity in the mtDNA control region and population structure in the small yellow croaker Larimichthys polyactis. Environ. Biol. Fish, 85, 303-314 (2009).
  18. Statistics Korea. Changes in catches of major fish species due to changes in climate (water temperature)., (2020, October 16 ). Retrieved from
  19. Kang, D.Y., Jo, K.C., Lee, J.H., Kang, H.W., Kim, H.C., Kim, G.H., Annual reproductive cycle of wild female yellow croaker, Larimichthys polyactis. J. Aquacul., 19, 188-196 (2006).
  20. Go, D.G., Regional brand strategy and regional activation by specific fishery product - The case of Brown Croaker. TJOKI, 27(4), 29-58 (2015).
  21. Heu, M.S., Park, K.H., Kim, K.H., Kang, S.I., Choi, J.D., Kim, J.S., Sanitary quality characterization of commercial salted semi-dried Brown Croaker. J Korean Soc Food Sci Nutr., 43(4), 584-591 (2014).
  22. Park, Y.C., Jin. S.O., Lim, J.Y., Kim, K.H., Lee, J.H., Cho, T.Y., Lee, H.J., Han, S.B., Lee, S.J., Lee, K.H., Yoon, H.S., Application for identification of food raw materials by PCR using universal primer. J. Food Hyg. Saf., 27(3), 317-324 (2012).
  23. Cho, H., Kim, J.H., Lee, W.S., Jeong, W., Moon, H.B., Hwang, S.Y., Development of molecular detection kit for Larimichthys crocea and Larimichthys polyactis. BioChip J., 8(2), 148-153 (2014).
  24. Bingpeng, X., Heshan, L., Zhilan, Z., Chunguang, W., Yanguo, W., Jianjun, W., DNA barcoding for identification of fish species in the Taiwan Strait. PloS one, 13(6), e0198109 (2018).
  25. Rosas, U., Menendez, F., Cornejo, R., Canales, R., VelezZuazo, X. Fish DNA barcoding around large marine infrastructure for improved biodiversity assessment and monitoring. Mitochondrial DNA Part A, 29(8), 1174-1179 (2018).
  26. Paul, D.N., Hebert, T., Ryan, G., The promise of DNA barcoding for taxonomy. Syst. Biol. 54(5), 852-859 (2005).
  27. Folmer, O., Black, M., Hoeh, W., Lutz, R., Vrijenhoek, R., DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol., 3(5), 294-299 (1994).
  28. Yu, Y.C., Hong, Y., Kim, J.J., Kim, H.S., Kang, T.S., Monitoring of commercial Cephalopod products sold on the South Korea market using DNA barcode information, J. Food Hyg. Saf., 34(5), 502-507 (2019).
  29. Kang, T.S., Monitoring of commercial products sold on sushi buffet restaurants in South Korea using DNA barcode information. J. Food Hyg. Saf., 35(1), 45-50 (2020).