• Title/Summary/Keyword: DNA alteration

Search Result 152, Processing Time 0.031 seconds

Epigenetic Mechanisms of Depression: Role of Histone Modification and DNA Methylation in BDNF Gene (우울증의 후성유전기전: BDNF 유전자의 히스톤 변형 및 DNA 메틸화의 역할)

  • Park, Sung Woo
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1536-1544
    • /
    • 2018
  • Depression is a common, serious, and recurring mental disorder. The pathogenesis of depression involves many factors such as environmental factor, genetic factor and alteration of structure and function in neurobiological systems. Increasing evidence supports that epigenetic alteration may be associated with depression. The epigenetics is explained as the mechanisms by which environmental factor causes changes in chromatin structure and alters gene expression without changing DNA base sequence. DNA methylation and histone modification involving histone acetylation and methylation are the main epigenetic mechanisms. Animal studies have shown that stressful environment such as early life stress can leave persistent epigenetic marks in the genome, which alter gene expression and influence neural and behavioral function through adulthood. A potentially important gene in depression is brain-derived neurotrophic factor (BDNF). BDNF plays a central role in depression and antidepressant action. In studies of the rodent, exposure to stress at prenatal, postnatal, and adult stages alters BDNF expression through histone modification and DNA methylation of the BDNF gene which results in anxiety and depressive-like behavior. This review discusses recent advances in the study of the epigenetic mechanisms that contribute to depression, particularly histone modification and DNA methylation of the BDNF gene, that may help in the development of new targets for depression treatment.

Shelterin Proteins and Cancer

  • Patel, Trupti NV;Vasan, Richa;Gupta, Divanshu;Patel, Jay;Trivedi, Manjari
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3085-3090
    • /
    • 2015
  • The telomeric end structures of the DNA are known to contain tandem repeats of TTAGGG sequence bound with specialised protein complex called the "shelterin complex". It comprises six proteins, namely TRF1, TRF2, TIN2, POT1, TPP1 and RAP1. All of these assemble together to form a complex with double strand and single strand DNA repeats at the telomere. Such an association contributes to telomere stability and its protection from undesirable DNA damage control-specific responses. However, any alteration in the structure and function of any of these proteins may lead to undesirable DNA damage responses and thus cellular senescence and death. In our review, we throw light on how mutations in the proteins belonging to the shelterin complex may lead to various malfunctions and ultimately have a role in tumorigenesis and cancer progression.

A Penalized Spline Based Method for Detecting the DNA Copy Number Alteration in an Array-CGH Experiment

  • Kim, Byung-Soo;Kim, Sang-Cheol
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.1
    • /
    • pp.115-127
    • /
    • 2009
  • The purpose of statistical analyses of array-CGH experiment data is to divide the whole genome into regions of equal copy number, to quantify the copy number in each region and finally to evaluate its significance of being different from two. Several statistical procedures have been proposed which include the circular binary segmentation, and a Gaussian based local regression for detecting break points (GLAD) by estimating a piecewise constant function. We propose in this note a penalized spline regression and its simultaneous confidence band(SCB) approach to evaluate the statistical significance of regions of genetic gain/loss. The region of which the simultaneous confidence band stays above 0 or below 0 can be considered as a region of genetic gain or loss. We compare the performance of the SCB procedure with GLAD and hidden Markov model approaches through a simulation study in which the data were generated from AR(1) and AR(2) models to reflect spatial dependence of the array-CGH data in addition to the independence model. We found that the SCB method is more sensitive in detecting the low level copy number alterations.

Resistance Mechanism of Acinetobacter spp. Strains Resistant to DW-116, a New Quinolone

  • Choi, Keum-Hwa;Baek, Moon-Chang;Kim, Byong-Kak;Choi, Eung-Chil
    • Archives of Pharmacal Research
    • /
    • v.21 no.3
    • /
    • pp.310-314
    • /
    • 1998
  • DW-116 is a new fluoroquinolone antimicrobial agent with a broad spectrum. In order to elucidate the resistance mechanism to DW-116 in Acinetobacter spp. bacteria, total chromosomal DNA was isolated from 10 strains of Acinetobacter spp. resistant to DW-116. Quinolone resistance determinant region (QRDR) of DNA gyrase gene was amplified by PCR. The 345 bp nucleotide fragment yielded was inserted into pKF 3 which was used as the vector. Comparisons of the DNA sequences of 8 strains with that of the wild type strain revealed a Ser-83 to Leu mutation in mutants and all ten strains contained one silent mutation$(T{\rightarrow}G)$in QRDR. From Acinetobacter MB4-8 strain, DNA gyrase was isolated and purified, through novobiocin-sepharose, heparin-sepharose affinity column chromatography. The enzyme was composed of two subunits and the molecular mass of subunits A and B were 75.6 and 51.9 kDa, respectively. The supercoiling activity of the reconstituted DNA gyrase composed of subunit A from Acinetobacter MB4-8 and subunit B from E. coli was not inhibited by $128{\mu}\textrm{g}$ml of ciprofloxacin. It might be said that one of the resistance mechanisms to DW-116 in Acinetohacter MB4-8 was subunit A alteration of DNA gyrase.

  • PDF

Automatic Control System Design and Implementation for a Miniaturized DNA Extraction System using Magnetic Beads (자성 비드를 이용한 소형 유전자 추출기의 자동제어 시스템의 설계 및 구현)

  • Kim, S.;Kim, J.D.;Kim, H.C.;Kim, J.
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.4
    • /
    • pp.311-317
    • /
    • 2009
  • An automatic control system is proposed and implemented for a miniaturized DNA extraction system using magnetic bead. A host-local system is employed for the accommodation of the graphical user interface and the basic control function. The functional partitioning into the local and the host system is discussed. The control functions are classified and formalized for the flexible control scenario, which is the input of the proposed system. As the proposed scenario is consists of the sequence of the user-centric actions, the user goal can be easily programmed and modified. The DNA extraction performance of the implemented system was compared with the existing silica-membrane-based method, resulting in the comparable concentration and purity of the extracted DNA. The proposed system is currently being utilized for the development of the DNA extraction system only changing scenario, without any alteration of the system.

Alteration of DNA Methylation in Gastric Cancer with Chemotherapy

  • Choi, Su Jin;Jung, Seok Won;Huh, Sora;Chung, Yoon-Seok;Cho, Hyosun;Kang, Hyojeung
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.8
    • /
    • pp.1367-1378
    • /
    • 2017
  • Epigenetic alterations such as DNA methylation, histone acetylation, and chromatin remodeling can control gene expression by regulating gene transcription. DNA methylation is one of the frequent epigenetic events that play important roles in cancer development. Cancer cells can gain significant resistance to anticancer drugs and escape programmed cell death through major epigenetic changes, including DNA methylation. To date, several research groups have identified instances of both (i) hypermethylation of tumor suppressor genes, and (ii) global hypomethylation of oncogenes. These changes in DNA methylation status could be used as biomarkers for the diagnosis and prognosis of cancer patients undergoing chemotherapies or other clinical therapies. Herein, we describe genes for which methylation is dependent upon anticancer drug resistance in patients with gastric cancer; we then suggest a significant epigenetic target to focus on for overcoming anticancer drug resistance.

Differentially Expressed Genes under Cold Acclimation in Physcomitrella patens

  • Sun, Ming-Ming;Li, Lin-Hui;Xie, Hua;Ma, Rong-Cai;He, Yi-Kun
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.986-1001
    • /
    • 2007
  • Cold acclimation improves freezing tolerance in plants. In higher plants, many advances have been made toward identifying the signaling and regulatory pathways that direct the low-temperature stress response; however, similar insights have not yet been gained for simple nonvascular plants, such as bryophytes. To elucidate the pathways that regulate cold acclimation in bryophytes, we used two PCR-based differential screening techniques, cDNA amplified fragment length polymorphism (cDNA-AFLP) and suppression subtractive hybridization (SSH), to isolate 510 ESTs that are differentially expressed during cold acclimation in Physcomitrella patens. We used realtime RT-PCR to further analyze expression of 29 of these transcripts during cold acclimation. Our results show that cold acclimation in the bryophyte Physcomitrella patens is not only largely similar to higher plants but also displays distinct differences, suggests significant alteration during the evolution of land plants.

Nickel Toxicity and Carcinogenicity (니켈의 독성과 발암성)

  • Park Hyoung-Sook;Park Kwangsik
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.2
    • /
    • pp.119-134
    • /
    • 2004
  • Human exposure to highly nickel-polluted environments, such as those associated with nickel refining, electroplating, and welding, has the potential to produce a variety of pathologic effects. Among them are skin allergies, lung fibrosis, and cancer of the respiratory tract. The exact mechanisms of nickel-induced carcinogenesis are not known and have been the subject of numerous epidemiologic and experimental investigations. This review provides the evidence of the current state for the genotoxic and mutagenic activity of Ni (II) particularly at high doses. Such doses are best delivered into the cells by phagocytosis of sparingly soluble nickel-containing dust particles. Ni (II) genotoxicity may be aggravated through the generation of DNA-damaging reactive oxygen species (ROS) and the inhibition of DNA repair by this metal. The epigenetic effects of nickel includes alteration in gene expression resulting from DNA hypermethylation and histone hypoacetylation, as well as activation some signaling pathways and subsequent transcrziption factors.

Cancer and Epigenetics

  • Bae, Jae-Bum;Kim, Young-Joon
    • Animal cells and systems
    • /
    • v.12 no.3
    • /
    • pp.117-125
    • /
    • 2008
  • One of the interesting trends in genome research is the study about epigenetic modification above single gene level. Epigenetics refers study about heritable change in the genome, which accompany modification in DNA or Chromatin besides DNA sequence alteration. We used to have the idea that the coding potential of the genome lies within the arrangement of the four bases A, T, G, C; However, additional information that affects phenotype is stored in the distribution of the modified base 5-methylcytosine. This form of information storage is flexible enough to be adapted for different somatic cell types, yet is stable enough to be retained during mitosis and/or meiosis. Epigenetic modification is a modification of the genome, as opposed to being part of the genome, so is known as "epigenetics"(Greek for "upon" genetics). This modification could be methylation on Cytosine base or post translational modification on histone protein(methylation, acetylation, phosphorylation, Sumoylation)($Dimitrijevi\hat{E}$ et al 2005). In this review, we would like to focus on the relationship of DNA methylation and cancer.

Environmental Pollutants and Epigenetics (환경오염 물질과 에피제네틱스)

  • Park, Sung-Kyun;Lee, Sun-Dong
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.5
    • /
    • pp.343-354
    • /
    • 2009
  • Since Barker found associations between low birth weight and several chronic diseases later in life, the hypothesis of fetal origins of adult disease (aka, Barker Hypothesis) and epigenetics have been emerging as a new paradigm for geneenvironment interaction of chronic disease. Epigenetics is the study of heritable changes in gene silencing that occur without any change in DNA sequence. Gene expression can be regulated by several epigenetic mechanisms, including DNA methylation and histone modifications, which may be associated with chronic conditions, such as cancers, cardiovascular disease, and type-2 diabetes. One carbon metabolism which involves the transfer of a methyl group catalyzed by DNA methyltransferase is an important mechanism by which DNA methylation occurs in promoter regions and/or repetitive elements of the genome. Environmental factors may induce epigenetic modification through production of reactive oxygen species, alteration of methyltransferase activity, and/or interference with methyl donors. In this review, we introduce recent studies of epigenetic modification and environmental factors, such as heavy metals, environmental hormones, air pollution, diet and psychosocial stress. We also discuss epigenetic perspectives of early life environmental exposure and late life disease occurrence.