• Title/Summary/Keyword: DNA Damage

Search Result 1,438, Processing Time 0.029 seconds

Cellular Dynamics of Rad51 and Rad54 in Response to Postreplicative Stress and DNA Damage in HeLa Cells

  • Choi, Eui-Hwan;Yoon, Seobin;Hahn, Yoonsoo;Kim, Keun P.
    • Molecules and Cells
    • /
    • v.40 no.2
    • /
    • pp.143-150
    • /
    • 2017
  • Homologous recombination (HR) is necessary for maintenance of genomic integrity and prevention of various mutations in tumor suppressor genes and proto-oncogenes. Rad51 and Rad54 are key HR factors that cope with replication stress and DNA breaks in eukaryotes. Rad51 binds to single-stranded DNA (ssDNA) to form the presynaptic filament that promotes a homology search and DNA strand exchange, and Rad54 stimulates the strand-pairing function of Rad51. Here, we studied the molecular dynamics of Rad51 and Rad54 during the cell cycle of HeLa cells. These cells constitutively express Rad51 and Rad54 throughout the entire cell cycle, and the formation of foci immediately increased in response to various types of DNA damage and replication stress, except for caffeine, which suppressed the Rad51-dependent HR pathway. Depletion of Rad51 caused severe defects in response to postreplicative stress. Accordingly, HeLa cells were arrested at the G2-M transition although a small amount of Rad51 was steadily maintained in HeLa cells. Our results suggest that cell cycle progression and proliferation of HeLa cells can be tightly controlled by the abundance of HR proteins, which are essential for the rapid response to postreplicative stress and DNA damage stress.

Antioxidative and Probiotic Properties of Lactobacillus gasseri NLRI-312 Isolated from Korean Infant Feces

  • Kim, H.S.;Jeong, S.G.;Ham, J.S.;Chae, H.S.;Lee, J.M.;Ahn, C.N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.9
    • /
    • pp.1335-1341
    • /
    • 2006
  • We selected a Lactobacillus spp. from Korean healthy infant feces based upon their antioxidant activity. This strain was identified as Lactobacillus gasseri by 16S rDNA sequencing, and named Lactobacillus gasseri NLRI-312. In the present study, we investigate the protective effect of this strain on the $H_2O_2$ induced damage to cellular membrane lipid and DNA in Jurkat cells. To estimate the extent of cellular lipid peroxidation inhibition, MDA (malondialdehyde) was measured, and DNA damage was tested by the comet assay. We also examined probiotic properties including tolerance to acid and bile, antibiotic resistance. From the results obtained, the supplementation of Jurkat cells with NLRI-312 decreased in DNA damage, while no effect was shown on MDA decrease. In probiotic properties, this strain was resistance to both acid and bile, showed considerably higher survival when incubated in pH 2 or 1% bile salts (w/v). We concluded that the NLRI-312 could be used as potential probiotic bacteria, with the effect of reducing DNA damage induced by $H_2O_2$.

Evaluation of Protective Effects of Houttuynia cordata on H2O2-Induced Oxidative DNA Damage Using an Alkaline Comet Assay in Human HepG2 Cells

  • Hah, Dae-Sik;Kim, Chung-Hui;Ryu, Jae-Doo;Kim, Eui-Kyung;Kim, Jong-Shu
    • Toxicological Research
    • /
    • v.23 no.1
    • /
    • pp.25-31
    • /
    • 2007
  • To evaluate the protective effect of Houttuynia cordata on hydrogen peroxide-induced oxidative DNA damage in HepG2 cell line, we used an alkaline single-cell gel electrophoresis (SCGE; comet assay). The DNA damage was analyzed by tail moment (TM) and tail length (TL), which used markers of DNA strand breaks in SCGE. The $100{\mu}g/ml$ of methanolic extract of Houttuynia cordata root showed significant protective effects (p < 0.01) against hydrogen peroxide-induced DNA damage in HepG2 cells and increased cell viability against hydrogen peroxide. The results of this study indicate that Houttuynia cordata root methanol extract acts as a potential antioxidant, and exhibits potential anticancer properties, which may provide a clue to find applications in new pharmaceuticals for oxidative stability.

Antioxidant and Oxidative DNA Damage Protection Potential of Methanol Extract of Red Tea Stem

  • Yadav, Anil Kumar;Kang, Sun Chul
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.2
    • /
    • pp.101-107
    • /
    • 2013
  • This study was undertaken to determine free radical scavenging capacity and oxidative DNA damage protecting activity of methanol extract of red tea stem. The extract was subjected to assess their antioxidant potential using various in vitro systems such as $DPPH^{\bullet}$, $ABTS^{{\bullet}+}$, super oxide and nitric oxide free radicals and it exhibited $IC_{50}$ values of $68.88{\pm}1.1$, $12.08{\pm}0.65$, $404.38{\pm}1.6$, $93.6{\pm}2.7{\mu}g/mL$ respectively. Red tea extract also showed ferric reducing ability (FRAP) with 2606.85 mmol Fe (II)/g of extract. Furthermore, Methanol extract of red tea stem showed significant DNA damage protecting activity in concentration dependent manner against $H_2O_2+UV$ induced photolysis on pUC19 plasmid DNA. Results of this study showed that the methanol extract of Red Tea stem has strong antioxidant potential along oxidative DNA damage protecting capacity that would be the significant sources of natural antioxidants, which might be helpful in preventing the progress of various oxidative stress generated diseases. Further study is necessary for isolation and characterization of the active antioxidants, which may serve as a potential source of natural antioxidant.

  • PDF

Effects of Hair Dyeing Application on the DNA Damage in Human Lymphocytes (염모제 사용에 의한 인체림프구의 DNA 손상 변화)

  • Kim Young-Chul;Sim Mi-Ja;Kwon Chong-Suk
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.1
    • /
    • pp.101-107
    • /
    • 2004
  • To ascertain the effects of hair dyeing application on the DNA damage in human lymphocytes, a mixture of permanent black colored hair dye with the same amount of oxidant containing 6% hydrogen peroxide was used. A hair dyeing with contacting the scalp (conventional dyeing) and a hair dyeing with 3 to 4mm away from the scalp (alternative dyeing) were applied to each If young healthy women. Blood was taken from the brachial vein at two sampling times, just before and 6 hours after the hair dyeing, and tail extent moment(TEM) and tail length (TL) were measured by using a comet assay. After dyeing, TL was significantly increased in both conventional dyeing group and alternative dyeing group compared with before dyeing as an average of 47% and 28%, respectively, and TL for conventional dyeing group was higher than alternative dyeing group as an average of 1.2 fold. After dyeing, TEM was significantly increased in both conventional dyeing group and alternative dyeing group compared with before dyeing as an average of 192% and 76%, respectively, and TEM for conventional dyeing group was significantly higher than alternative dyeing group as an average of 1.7 fold. Therefore, alternative dyeing application was induced to lower lymphocyte DNA damage than conventional dyeing application, and TEM was appeared to be a more sensitive tool for the measurement of lymphocyte DNA damage than TL in this study.

Protective Ability of Ethanol Extracts of Hypericum scabroides Robson & Poulter and Hypericum triquetrifolium Turra against Protein Oxidation and DNA Damage

  • Kizil, Goksel;Kizil, Murat;Ceken, Bircan
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.130-136
    • /
    • 2009
  • The present study was conducted to determine the protective ability of the ethanol extracts of Hypericum scabroides Robson & Poulter (HS) and Hypericum triquetrifolium Turra (HT) against the protein oxidation and DNA damage induced by Fenton system. The ability of HS and HT to prevent oxidative damage to bovine serum albumin (BSA) induced by $Fe^{3+}/H_2O_2$ and ascorbic acid was investigated. The ethanol extracts of HS and HT at different concentrations ($50-1,000{\mu}g/mL$) efficiently prevented protein oxidation induced by hydroxy radical as assayed by protein oxidation markers including protein carbonyl formation (PCO) and polyacrylamide gel electrophoresis. The effect of ethanol extracts of HS and HT on DNA cleavage induced by UV-photholysis of $H_2O_2$ using pBluescript M13+ plasmid DNA were investigated. These extracts significantly inhibited DNA damage induced by reactive oxygen species (ROS). Therefore, HS and HT extracts may be useful in the food industry as effective synthetic antioxidants.

The Inhibitory Effect of Phytochemicals on the Oxidative DNA Damage in Lymphocytes by Chrysotile

  • Ryu, A-Reum;Kim, Jum-Ji;Lee, Mi-Young
    • Journal of Applied Biological Chemistry
    • /
    • v.55 no.3
    • /
    • pp.179-184
    • /
    • 2012
  • We investigated the cytotoxicity and oxidative DNA damage by chrysotile, one of the asbestos, in this investigation. Chrysotile enhanced malondialdehyde (MDA) levels and intracellular reactive oxygen speices generation in human airway epithelial cells. Furthermore, asbestos-induced oxidative DNA damage in lymphocytes was evaluated by single cell gel electrophoresis and quantified as DNA tail moment. Notably, phytochemicals such as curcumin, berberine, and sulforaphane presented inhibitory effect on the asbestos-induced oxidative DNA damage in lymphocytes.

Interferon-Stimulated Gene 15 in the Control of Cellular Responses to Genotoxic Stress

  • Jeon, Young Joo;Park, Jong Ho;Chung, Chin Ha
    • Molecules and Cells
    • /
    • v.40 no.2
    • /
    • pp.83-89
    • /
    • 2017
  • Error-free replication and repair of DNA are pivotal to organisms for faithful transmission of their genetic information. Cells orchestrate complex signaling networks that sense and resolve DNA damage. Post-translational protein modifications by ubiquitin and ubiquitin-like proteins, including SUMO and NEDD8, are critically involved in DNA damage response (DDR) and DNA damage tolerance (DDT). The expression of interferon-stimulated gene 15 (ISG15), the first identified ubiquitin-like protein, has recently been shown to be induced under various DNA damage conditions, such as exposure to UV, camptothecin, and doxorubicin. Here we overview the recent findings on the role of ISG15 and its conjugation to target proteins (e.g., p53,$ {\Delta}Np63{\alpha}$, and PCNA) in the control of cellular responses to genotoxic stress, such as the inhibition of cell growth and tumorigenesis.

Analysis of the global gene expression profiles in genomic instability-induced cervical cancer cells

  • Oh, Jung-Min
    • International Journal of Oral Biology
    • /
    • v.47 no.2
    • /
    • pp.17-24
    • /
    • 2022
  • Preserving intact genetic material and delivering it to the next generation are the most significant tasks of living organisms. The integrity of DNA sequences is under constant threat from endogenous and exogenous factors. The accumulation of damaged or incompletely-repaired DNA can cause serious problems in cells, including cell death or cancer development. Various DNA damage detection systems and repair mechanisms have evolved at the cellular level. Although the mechanisms of these responses have been extensively studied, the global RNA expression profiles associated with genomic instability are not well-known. To detect global gene expression changes under different DNA damage and hypoxic conditions, we performed RNA-seq after treating human cervical cancer cells with ionizing radiation (IR), hydroxyurea, mitomycin C (MMC), or 1% O2 (hypoxia). Results showed that the expression of 184-1037 genes was altered by each stimulus. We found that the expression of 51 genes changed under IR, MMC, and hypoxia. These findings revealed damage-specific genes that varied differently according to each stimulus and common genes that are universally altered in genetic instability.

Plasma, Tissue Thiobarbituric Acid Reactive Substance and Lymphocyte Oxidative DNA Damage in Mouse Fed Gamma Irradiated Diet (방사선 조사 사료를 섭취한 Mouse의 혈장, 간, 소장 점막의 과산화지질과 림프구 DNA의 산화적 손상)

  • 장현희;강명희;양재승;이선영
    • Journal of Nutrition and Health
    • /
    • v.36 no.3
    • /
    • pp.255-261
    • /
    • 2003
  • Food irradiation has been steadily increasing in many countries in line with increasing international trade and concerns about naturally occurring harmful contaminants in food. Although irradiation provides an excellent safeguard for the consumer by destroying almost 100% of harmful bacteria, it is necessary to ensure the safety of irradiated foods. This study was performed to investigate the effect of an irradiated diet on lipid peroxidation in the plasma, liver, small intestinal mucosa, and lymphocyte DNA damage in mice. Eight-week old ICR mice were assigned to two groups to receive either non-irradiated or irradiated (10 kGy) diets containing 20.38% fish powder and 6.06% sesame seeds for 4 weeks. The resulting changes in the degrees of lipid peroxidation were evaluated based on the level of plasma and liver thiobarbituric acid reactive substance (TBARS), transmission electron micrograph of jejunal mucosa, and free radical-induced oxidative DNA damage in lymphocytes, as measured by alkaline comet assay (single cell gel electrophoresis). The peroxide values of the gamma irradiated diet were measured every week, and the sample for comet assay was taken at the end of the four week experimental period. There was no significant difference in food efficiency ratio between the two groups. The peroxide values of the diet were immediately increased to 35.5% after gamma irradiation and kept on increasing during storage. After 4 weeks, no differences in tissue or plasma TBARS value were observed between the two groups, but epithelial cells of jejumum showed osmiophillic laminated membranous structures, considered as myelin figures,. The oxidative DNA damage expressed as tail moment (TM) increased 30% in the blood lymphocytes of the mice fed the irradiated diet. In conclusion, the comet assay sensitively detected differences in lymphocyte DNA damage after feeding with the irradiated diet for 4 weeks. However, in order to ensure the safety of irradiated foods, it would be more useful to conduct a long-term feeding regimen using an irradiated diet and examine the level of lipid peroxidation and the state of oxidative stress in a greater range of organs.