• Title/Summary/Keyword: DNA Coding

Search Result 547, Processing Time 0.027 seconds

Association of selected gene polymorphisms with thermotolerance traits in cattle - A review

  • Hariyono, Dwi Nur Happy;Prihandini, Peni Wahyu
    • Animal Bioscience
    • /
    • v.35 no.11
    • /
    • pp.1635-1648
    • /
    • 2022
  • Thermal stress due to extreme changes in the thermal environment is a critical issue in cattle production. Many previous findings have shown a decrease in feed intake, milk yield, growth rate, and reproductive efficiency of cattle when subjected to thermal stress. Therefore, selecting thermo-tolerant animals is the primary goal of the efficiency of breeding programs to reduce those adverse impacts. The recent advances in molecular genetics have provided significant breeding advantages that allow the identification of molecular markers in both beef and dairy cattle breeding, including marker-assisted selection (MAS) as a tool in selecting superior thermo-tolerant animals. Single-nucleotide polymorphisms (SNPs), which can be detected by DNA sequencing, are desirable DNA markers for MAS due to their abundance in the genome's coding and non-coding regions. Many SNPs in some genes (e.g., HSP70, HSP90, HSF1, EIF2AK4, HSBP1, HSPB8, HSPB7, MYO1A, and ATP1A1) in various breeds of cattle have been analyzed to play key roles in many cellular activities during thermal stress and protecting cells against stress, making them potential candidate genes for molecular markers of thermotolerance. This review highlights the associations of SNPs within these genes with thermotolerance traits (e.g., blood biochemistry and physiological responses) and suggests their potential use as MAS in thermotolerant cattle breeding.

Cloning, Expression, and Characterization of a Family B-Type DNA Polymerase from the Hyperthermophilic Crenarchaeon Pyrobaculum arsenaticum and Its Application to PCR

  • SHIN HEA-JIN;LEE SUNG-KYOUNG;CHOI JEONG JIN;KOH SUK-HOON;LEE JUNG-HYUN;KIM SANG-JIN;KWON SUK-TAE
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1359-1367
    • /
    • 2005
  • The gene encoding Pyrobaculum arsenaticum DNA polymerase (Par DNA polymerase) was cloned and sequenced. The gene consists of 2,361 bp coding for a protein with 786 amino acid residues. The deduced amino acid sequence of Par DNA polymerase showed a high similarity to archaeal family B-type DNA polymerases (Group I), and contained all of the motifs conserved in the family B-type DNA polymerases for $3'{\rightarrow}5'$ exonuclease and polymerase activities. The Par DNA polymerase gene was expressed under the control of the T7lac promoter on the expression vector pET-22b(+) in Escherichia coli BL21-CodonPlus(DE3)-RP. The expressed enzyme was purified by heat treatment, and Cibacron blue 3GA and $Hirap^{TM}$ Heparin HP column chromatographies. The optimum pH of the purified enzyme was 7.5. The enzyme activity was activated by divalent cations, and was inhibited by EDTA and monovalent cations. The half-life of the enzyme at $95^{\circ}C$ was 6 h. Par DNA polymerase possessed associated $3'{\rightarrow}5'$ proofreading exonuclease activity, which is consistent with its deduced amino acid sequence. PCR experiment with Par DNA polymerase showed an amplified product, indicating that this enzyme might be useful in DNA amplification and PCR-based applications.

cDNAs encoding the antigenic proteins in pathogenic strain of Entamoeba histolytica (이질아메바 병원성 분리주에서 발현되는 항원 단백질을 coding하는 cDNA)

  • 임경일;최종태
    • Parasites, Hosts and Diseases
    • /
    • v.35 no.3
    • /
    • pp.203-210
    • /
    • 1997
  • The difrrrenlial display reverse transcription polymerase chain reaction (DDRT-PCR) aniilysis roils performed to identify the pathogellir strain specific amplicons. mRNAs were purified from the trophozoites of the pathogenif strain YS-27 and the non-pathogenic strain S 16. respectively. Three kinds of rirsl stranded rDNAs were reverse transcribed from the mRNAs by one base anchored oligo-dT 11M (M: A. C, or G) primers. Each cDNA lemplatr was used for DDRT-PCK analysis. A total of 144 pathogenic strain specific amplicons was observed in DDRT-PCR analysis using primer combinations of the 11 arbitrary primers and the 3 one base anchored oli해-dT11M primers. Of these 31 amplit'tons were verified as the amplirons amplified only from the mRNAs of the pathogenic strain by DNA slots biol llybridizatioil. Furthel cklaracleization of the 31 pathogenic strain sprcifil amplicons by DNA slot blot hybridlnation analysis using biotin labeled Probes or the PCR amplified DNA of rysteine proteinase genes revealed that 21 of them were amplliried from the maNAs of the cysteine proteinase genes. Four randomly selected amplirons out of the rest 10 amplirons were used fur screening of cDNA library followed by immunoscreening and all of them were turned outs to be amplified from the mRNA.

  • PDF

Cloning, Sequencing and Expression of dTDP-D-Glucose 4,6-Dehydratase Gene from Streptomyces antibioticus $T\ddot{u}99$, a Producer of Chlorothricin

  • Sohng, Jae-Kyung;Yoo, Jin-Cheol
    • BMB Reports
    • /
    • v.29 no.3
    • /
    • pp.183-191
    • /
    • 1996
  • DNA fragments, homologous to the dTDP-D-glucose 4,6-dehydratase gene, obtained from the genomic DNA of Streptomyces antibioticus $T\ddot{u}99$, a producer of the unusual macrolide antibiotic chlorothricin, were cloned and sequenced. This dehydratase gene was designated as oxil. The coding region of the oxil gene is composed of 987 bp, and analysis of the DNA sequence data reveals sequences for the gene products of 329 amino acids (molecular weight of 36,037). The deduced amino acids are 59% identical to the StrE, dTDP-D-glucose 4,6-dehydratase from the streptomycin pathway. The oxil's function was examined by expressing it in E. coli using the T7 RNA polymerase/promoter system (pRSET) to produce an active fusion protein including a his tag. This enzyme shows specificity of substrate, specific only to dTDP-D-glucose.

  • PDF

Zoogloea ramigera 115SLR의 생고분자물질 생합성에 관여하는 pyruvyl transferase gene의 cloning 및 염기서열 결정

  • 이삼빈
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.4
    • /
    • pp.415-422
    • /
    • 1996
  • A gene coding for a pyruvyl transferase enzyme involved in exopolysaccharide biosynthesis of Zoogloea ramigera 115SLR was isolated and sequenced. A 4.5 kb of BamHI DNA fragment was isolated from chromosomal DNA using a probe derived from ketal pyruvyl transferase gene of Xanthomonas campestris. The nucleotide sequence of 2.66 kb Pst1/HindIII DNA fragment which was homology with a probe revealed the existence of two complete open reading frames (ORF2 and ORF3) and two partial open reading frames (ORFI and ORF4). The deduced amino acid sequence of ORF3 was homologous to the ketalase (GumL product) of X campestris with 49.5% of similarity and 21.6% of identity. ORF2 on the other hand showed the higher identity with the ketalase (ExoV product) of Rhizobium meliloti (36%) as well as the ketalase of X campestris (23%) than that of ORF3. A gene product of ORF2 was determined with a bacteriophage T7 RNA polymerase/promoter system in E. coli. The molecular weight of protein was 33,500 dalton.

  • PDF

Development of Species-Specific PCR Primers for the Detection of Streptococcus sobrinus

  • Kim, Sang-Gon;Yoo, So-Young;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • v.35 no.1
    • /
    • pp.21-25
    • /
    • 2010
  • This study was undertaken to develop species-specific forward and universal reverse PCR primers for the detection of Streptococcus sobrinus. These primers target the variable regions of the 16S ribosomal RNA coding gene (rDNA) and their specificity was tested against 10 strains of S. sobrinus strains and 20 different species of oral bacteria using serial dilutions of the purified genomic DNA of S. sobrinus ATCC $33478^T$. Our data show that species-specific amplicons were obtained from all the S. sobrinus strains tested but not from other species. Both direct and nested PCR could detect as little as 400 pg and 4 fg of genomic DNA from S. sobrinus ATCC $33478^T$, respectively. This result suggests that these PCR primers are highly specific and sensitive and applicable to the detection of S. sobrinus.

Identification of Plant Factors Involving in Agrobacterium-mediated Plant Transformation

  • Nam, Jaesung
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.5
    • /
    • pp.387-393
    • /
    • 2000
  • The process by which Agrobacterium tumefaciens genetically transforms plants involves a complex series of reactions communicated between the pathogen and the plants. To identify plant factors involved in agrobacterium-mediated plant transformation, a large number of T-DNA inserted Arabidopsis thaliana mutant lines were investigated for susceptibility to Agrobacterium infection by using an in vitro root inoculation assay. Based on the phenotype of tumorigenesis, twelve T-DNA inserted Arabidopsis mutants(rat) that were resistant to Agrobacterium transformation were found. Three mutants, rat1, rat3, and rat4 were characterized in detail. They showed low transient GUS activity and very low stable transformation efficiency compared to the wild-type plant. The resistance phenotype of rat1 and rats resulted from decreased attachment of Agrobacterium tumefaciens to inoculated root explants. They may be deficient in plant actors that are necessary for bacterial attachment to plant cells. The disrupted genes in rat1, rat3, and rat4 mutants were coding a arabinogalactan protein, a likely cell wall protein and a cellulose synthase-like protein, respectively.

  • PDF

Molecular Cloning of a cDNA Encoding Novel Tomato ACC Oxidase Using RT-PCR

  • Yang, Suk-Jin;Hahn, Kyu-Woong
    • Journal of Life Science
    • /
    • v.9 no.2
    • /
    • pp.72-75
    • /
    • 1999
  • Using RT-PCR, a cDNA encoding tomato (Lycopersicon esculentum) ACC oxidase has partially been cloned, sequenced and identified. The nucleotide suquence of the clone was in the coding region and shared about 80% of homology iwht the other ACC oxidase genes of tomato, and 70∼84% with those of other plants such as Oryza sativa, Nicotiana tabacum and Helianthus annuus. In the wounded tomato leaves, this nucleotide transcripts were accumulated rapidly and declined slowly thereafter. These results suggested that the predicted clone might be another member of tomato ACC oxidase gene family.

Molecular Cloning of Red Seabream, Pagrus major Somatolactin cDNA and Its Expression in Escherichia coli

  • Munasinghe, Helani;Koh, Soon-Mi;Lee, Jehee
    • Journal of Aquaculture
    • /
    • v.16 no.3
    • /
    • pp.165-170
    • /
    • 2003
  • Isolation, cloning and sequencing of red seabream (Pagrus major) somatolactin (rsbSL) cDNA from pituitary gland revealed an open reading frame of 693 bp coding for a pre-growth hormone of 231 amino acids with a 22 amino acid putative signal peptide. Deduced amino acid sequence showed that there was one possible N-glycosylation site at Asn$^{145}$ and seven Cys residues (Cys$_{29}$ , Cys$^{39}$ , Cys$^{66}$ , Cys$^{89}$ , Cys$^{205}$ , Cys$^{222}$ , Cys$^{230}$ ). Except Cys$^{66}$ , others may be involved in disulfide bond formation. The rsbSL presented a 93% amino acid sequence identity with the SL of gilthead seabream (Sparus aurata) and contained the conserved hormone domain region. Expression of rsbSL in E. coli (BL2l) cells and gel analysis revealed a higher molecular weight for rsbSL than expected theoretically, implying posttranslational modifications.

Cancer and Epigenetics

  • Bae, Jae-Bum;Kim, Young-Joon
    • Animal cells and systems
    • /
    • v.12 no.3
    • /
    • pp.117-125
    • /
    • 2008
  • One of the interesting trends in genome research is the study about epigenetic modification above single gene level. Epigenetics refers study about heritable change in the genome, which accompany modification in DNA or Chromatin besides DNA sequence alteration. We used to have the idea that the coding potential of the genome lies within the arrangement of the four bases A, T, G, C; However, additional information that affects phenotype is stored in the distribution of the modified base 5-methylcytosine. This form of information storage is flexible enough to be adapted for different somatic cell types, yet is stable enough to be retained during mitosis and/or meiosis. Epigenetic modification is a modification of the genome, as opposed to being part of the genome, so is known as "epigenetics"(Greek for "upon" genetics). This modification could be methylation on Cytosine base or post translational modification on histone protein(methylation, acetylation, phosphorylation, Sumoylation)($Dimitrijevi\hat{E}$ et al 2005). In this review, we would like to focus on the relationship of DNA methylation and cancer.