• Title/Summary/Keyword: DME fuel

Search Result 161, Processing Time 0.024 seconds

Experimental Study of Hydrogen and Syngas Production over Ni/Ce-ZrO2/Al2O3 Catalysts with Additives (Ni/Ce-ZrO2/Al2O3 촉매의 첨가제에 따른 수소 및 합성가스 생성에 대한 실험적 연구)

  • Cho, Wonjun;Yu, Hyejin;Mo, Yonggi;Ahn, Whaseung
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.2
    • /
    • pp.105-113
    • /
    • 2014
  • Performance tests on $Ni/Ce-ZrO_2/Al_2O_3$ catalysts with additives (MgO, $La_2O_3$) were investigated in the combined reforming processes (SCR, ATR, TRM) in order to produce hydrogen and carbon monoxide (it is called "syngas".). The catalyst characterization was conducted using the BET surface analyzer, X-ray diffraction (XRD), SEM, TPR and TGA. The combined reforming process was developed to adjust the syngas ratio depending on the synthetic fuel (methanol, DME and GTL) manufacturing processes. Ni-based catalysts supported on alumina has been generally recommended as a combined reforming reaction catalyst. It was found that both free NiO and complexed NiO species were responsible for the catalytic activity in the combined reforming of methane conversion, and the $Ce-ZrO_2$ binary support employed had improved the oxygen storage capacity and thermal stability. The additives, MgO and $La_2O_3$, also seemed to play an important role to prevent the formation of the carbon deposition over the catalysts. The experimental results were compared with the equilibrium data using a commercial simulation tool (PRO/II).

Study on the Effect of Thermal Stratification on DME/n-Butane HCCI Combustion (열적성층화가 DME/n-Butane 예혼합압축자기착화연소에 미치는 영향에 관한 연구)

  • Lim, Ock-Taeck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1035-1042
    • /
    • 2010
  • The thermal stratification effect has been thought as one of the way to avoid dramatically generating the heat from HCCI combustion. We investigate the effect of thermal stratification on HCCI combustion fueled by DME and n-Butane. The thermal stratification occurs in a combustion chamber of a rapid compression machine with premixture by buoyancy effect that is made of fuel and air. The premixture is then adiabatically compressed, and during the process, the in-cylinder gas pressure is measured and two-dimensional chemiluminescence images are prepared and analyzed. Under the thermal stratification, the LTR starting time and the HTR starting time are advanced than that of homogeneous case. Further, the LTR period and the luminosity duration under homogeneous conditions are shorter than the corresponding quantities under stratified conditions. Additionally, under stratified conditions, the brightest luminosity intensity is delayed longer than that of homogeneous condition.

Numerical Analysis of Effect of Inhomogeneous Pre-mixture on Pressure Rise Rate in HCCI Engine by Using Multizone Chemical Kinetics (화학반응수치해석을 이용한 HCCI기관의 예혼합기의 성층화성이 연소시의 압력 상승률에 미치는 영향)

  • Lim, Ock-Taeck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.449-456
    • /
    • 2010
  • The HCCI engine is a prospective internal combustion engine with which high diesel-like efficiencies and very low NOx and particulate emissions can be achieved. However, several technical issues must be resolved before HCCI engines can be used for different applications. One of the issues concerning the HCCI engine is that the operating range of this engine is limited by the rapid pressure rise caused by the release of excessive heat. This heat release is because of the self-accelerated combustion reaction occurring in the engine and the resulting engine knock in the high-load region. The purpose of this study is to evaluate the role of thermal stratification and fuel stratification in reducing the pressure rise rate in an HCCI engine. The concentrations of NOx and CO in the exhaust gas are also evaluated to confirm combustion completeness and NOx emission. The computation is carried out with the help of a multizone code, by using the information on the detailed chemical kinetics and the effect of thermal and fuel stratification on the onset of ignition and rate of combustion. The engine is fueled with dimethyl ether (DME), which allows heat release to occur in two stages, as opposed to methane, which allows for heat release in a single stage.

Knock Characteristic Analysis of Gasoline and LPG Homogeneous Charge Compression Ignition Engine (가솔린과 LPG 예혼합 압축 착화 엔진의 노킹 특성)

  • Yeom, Ki-Tae;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.54-62
    • /
    • 2007
  • The knock characteristics in an engine were investigated under homogeneous charge compression ignition (HCCI) operation. Liquefied petroleum gas (LPG)and gasoline were used as fuels and injected at the intake port using port fuel injection equipment. Di-methyl ether (DME) was used as an ignition promoter and was injected directly into the cylinder near compression top dead center (TDC). A commercial variable valve timing device was used to control the volumetric efficiency and the amount of internal residual gas. Different intake valve timingsand fuel injection amounts were tested to verify the knock characteristics of the HCCI engine. The ringing intensity (RI) was used to define the intensity of knock according to the operating conditions. The RI of the LPG HCCI engine was lower than that of the gasoline HCCI engine at every experimental condition. The indicated mean effective pressure (IMEP) dropped when the RI was over 0.5 MW/m2and the maximum combustion pressure was over 6.5MPa. There was no significant relationship between RI and fuel type. The RI can be predicted by the crank angle degree (CAD) at 50 CA. Carbon monoxide (CO) and hydrocarbon (HC) emissions were minimized at high RI conditions. The shortest burn duration under low RI was effective in achieving low HC and CO emissions.

Synthesis Gas Production from Gasification of Woody Biomass (목질계 바이오매스로부터 가스화에 의한 합성가스 제조 연구)

  • Cho, Won-Jun;Mo, Yong-Gi;Song, Taek-Yong;Baek, Young-Soon;Kim, Seung-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.6
    • /
    • pp.587-594
    • /
    • 2010
  • Hydrogen is an alternative fuel for the future energy which can reduce pollutants and greenhouse gases. Synthesis gas has played an important role of synthesizing the valuable chemical compounds, for example methanol, DME and GTL chemicals. Renewable biomass feedstocks can be potentially used for fuel and chemicals. Current thermal processing techniques such as fast pyrolysis, slow pyrolysis, and gasification tend to generate products with a large slate of compounds. Lignocellulose feedstocks such as forest residues are promising for the production of bio-oil and synthesis gas. Pyrolysis and gasification was investigated using thermogravimetric analyzer (TGA) and bubbling fluidized bed gasification reactor to utilize forest woody biomass. Most of the materials decomposed between $320^{\circ}C$ and $380^{\circ}C$ at heating rates of $5{\sim}20^{\circ}C$/min in thermogravimetric analysis. Bubbling fluidized bed reactor was used to study gasification characteristics, and the effects of reaction temperature, residence time and feedstocks on gas yields and selectivities were investigated. With increasing temperature from $750^{\circ}C$ to $850^{\circ}C$, the yield of char decreased, whereas the yield of gas increased. The gaseous products consisted of mostly CO, $CO_2$, $H_2$ and a small fraction of $C_1-C_4$ hydrocarbons.

Effect of Inlet Temperature and CO2 Concentration in the Fresh Charge on Combustion in a Homogeneous Charge Compression Ignition Engine Fuelled with Dimethyl Ether (Dimethyl Ether 예혼합 압축 착화 엔진에서 흡기중 CO2 농도와 흡기온도 변화가 연소에 미치는 영향)

  • Bae, Choong-Sik;Jang, Jin-Young;Yeom, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.6 s.261
    • /
    • pp.514-521
    • /
    • 2007
  • This study focused on the effects of the $CO_2$ gas concentration in fresh charge and induction air temperature on the combustion characteristics of homogeneous charge compression ignition with dimethyl ether (DME) fuel, which was injected at the intake port. Because of adding $CO_2$ in fresh charge, start of auto-ignition was retarded and bum duration became longer. Indicated combustion efficiency and exhaust gas emission were found to be worse due to the incomplete combustion. Partial burn was observed at the high concentration of $CO_2$ in fresh charge with low temperature of induction air. However, indicated thermal efficiency was improved due to increased expansion work by late ignition and prolonged bum duration. Start of auto-ignition timing was advanced with negligible change of burn duration, as induction air temperature increased. Burn duration was mainly affected by oxygen mole concentration in induction mixture. Bum duration was increased, as oxygen mole concentration was decreased.

An Investigation of HCCI Combustion Processes of Stratified Charge Mixture Using Rapid Compression Machine (급속압축 장치를 이용한 불균일 예혼합기가 HCCI연소에 미치는 영향에 관한 연구)

  • Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.8-14
    • /
    • 2009
  • Effect of heterogeneity of combustion chamber has been thought as one of the way to avoid dramatically generating heat in HCCI Combustion. The purpose of this research is to investigate the effect of heterogeneity, especially thermal stratification and fuel strength stratification on HCCI Combustion fueled with DME and n-Butane. Thermal stratification is formed in Combustion Chamber of Rapid Compression Machine with 3 Kinds of pre-mixture has different properties. The stratified charge mixture is adiabatic compressed and on that process, in cylinder gas pressure and two-dimensional chemiluminescence images are measured and analyzed.

Gasification of Crude Glycerin for Liquid Fuel Production (액체연료 생산을 위한 폐글리세린의 가스화 기술 개발)

  • Yoon, Sang-Jun;Ra, Ho-Won;Lee, See-Hoon;Choi, Young-Chan;Lee, Jae-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.451-454
    • /
    • 2009
  • Production and application of biodiesel are expected to grow steadily in the coming years and thus output of its by-product, crude glycerin, will accordingly increase as well. In the present study, gasification of biodiesel by-product as a renewable energy was performed in an entrained flow gasifier to investigate the gasification performance with the operating conditions. Crude glycerin shows a high heating value of 6,000 kcal/kg and low ash and sulphur content. Gasification was conducted in a temperature range of $950\;{\sim}\;1500\;^{\circ}C$. The variation of syngas composition with excess air ratio of 0.17 ~ 0.7 for air or oxygen as a gasification agent was investigated. From the results, syngas heating value, carbon conversion and cold gas efficiency of more than $2500\;kcal/Nm^3$, 95% and 65% were achieved, respectively. The temperature dependency of syngas composition, carbon conversion, and cold gas efficiency shows a similar tendency to excess air ratio at the temperature corresponding to the excess air ratio. The $H_2/CO$ ratio of the product gas was varied from 1.25 to 0.7 with the excess air ratio and this gas composition was favorable for DME synthesis. The optimum excess air ratio for gasification of biodiesel by-product was evaluated to be an approximately 0.35 to 0.4. The present results indicate that crude glycerin can be utilized as a feedstock for gasification to make syngas.

  • PDF

Conversion of DME to Light Olefins over Mesoporous SAPO-34 Catalyst Prepared by Carbon Nanotube Template (탄소 나노튜브 주형물질에 의해 제조된 메조 세공 SAPO-34 촉매상에서 경질 올레핀으로의 DME 전환 반응)

  • Kang, Eun-Jee;Lee, Dong-Hee;Kim, Hyo-Sub;Choi, Ki-Hwan;Park, Chu-Sik;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.34-40
    • /
    • 2014
  • Mesoporous SAPO-34 catalyst was successfully synthesized by the hydrothermal method using carbon nanotube (CNT) as a secondary template. The effects of CNT contents (0.5, 1.5, 2.5, and 4.5 mol%) on catalytic performances were investigated. The synthesized catalysts were characterized with XRD, SEM, nitrogen physisorption isotherm and $NH_3$-TPD. Among the synthesized catalysts, SAPO-34 catalyst prepared by the addition of 1.5 mol% CNT (1.5C-SAPO-34) observed not only the largest amounts of mesopore volume but also acid sites. However, the mesopore volume was relatively decreased by further increasing of CNT contents due to the formation of small crystalline. The catalytic lifetime and the selectivity of light olefins ($C_2{\sim}C_4$) were examined for the dimethyl ether to olefins reaction. As a result, the 1.5C-SAPO-34 catalyst showed an improvement of ca. 36% in a catalytic lifetime and a better selectivity to light olefins as compared with the general SAPO-34 catalyst.

Research and Development & Commercial Deployment Status for Coal Gasification Technology - Mainly from GTC 2010 (2010 가스화 기술 컨퍼런스를 중심으로 살펴본 석탄 가스화 기술의 개발 동향 및 상업화 전개 현황)

  • Lee, Jin-Wook;Yoo, Young-Don;Yun, Yong-Seung
    • Journal of Energy Engineering
    • /
    • v.20 no.2
    • /
    • pp.123-142
    • /
    • 2011
  • Coal Gasification Technology is one of the best alternatives among clean fossil fuel utilization. Major technology holding companies are devoting their efforts to develop more advanced technology to dominate the market in advance because of its importance on the applications such as IGCC, CTL, coal to SNG, various chemicals and so on. Japan and China, as well as America and European countries, have developed couple of thousands ton/day-class coal gasification technology. However, our gasification technology remains in the development stage with couple of ton/day-class pilot plant. So, we should be interested in developing this technology considering that we are heavily dependent of coal energy. In this paper, we summarized the trend and status of coal gasification technology development and commercial deployment of major technology holding companies mainly from the presentation materials of 'Gasification Technology Conference 2010', which is the biggest place of information exchange for recent coal gasification technology.