• Title/Summary/Keyword: DME(Dimethyl ether)

Search Result 157, Processing Time 0.023 seconds

Effects of the EGR and Injection Pressure on the Combustion and Emission Characteristics of DME Commonrail Diesel Engine (DME를 연료로 하는 커먼레일 디젤 엔진의 연소와 배기 특성에 미치는 분사압력과 EGR의 영향)

  • Chung, Jae-Woo;Kang, Jung-Ho;Lee, Sung-Man;Kim, Hyun-Chul;Kang, Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.84-91
    • /
    • 2006
  • In this study, the effect of EGR and fuel injection pressure on the characteristics of combustion and emission performance of the common-rail diesel engine is investigated using DME fuel as a smoke-free alternative fuel. Because the heating value and density of DME fuel are lower than those of diesel fuel, the injection duration of the DME engine is relatively longer than the injection duration of the diesel engine with the same injection pressure. However, the higher injection pressure can shorten the injection duration for the DME engine. Although the smoke level of the DME engine is much lower than that of the diesel engine, the NOx is at a level similar to that of the diesel engine. As a proposed solution for this, the EGR technique is empirically applied to the DME engine. In the experiments, the injection pressure was changed from 200bar to 400bar, and the EGR rate was limited under 40%. With the same injection timing and fuel amount, the experiment results indicated that the increase of injection pressure led to the increase of IMEP while decreasing HC and CO emissions. However, the NOx emission tends to increase as the injection pressure becomes higher. On the other hand, as the EGR rate was increased, NOx emission and A/F were reduced while the HC and CO emissions were increased. Because HC and CO emissions have the critical A/F point where the emissions of HC and CO are rapidly increased, it is proposed that the EGR rate must be limited under the critical EGR rate.

A Comparative Study on the Performance of High Pressure Fuel Pumps for Compression Ignition Engines Fueled by DME (DME를 연료로 하는 압축 착화 엔진용 고압연료 펌프의 성능 비교 연구)

  • JAEHEE JEONG;WONJUN CHO;OCKTAECK LIM
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.1
    • /
    • pp.59-68
    • /
    • 2023
  • In this study, the performance of high-pressure fuel pumps was compared to find a high-pressure pump suitable for dimethyl ether (DME) fuel, and to establish a database of basic data on flow rates. The use of DME in compression ignition engines can reduce pollutant emissions. The cetane value of DME is higher than that of diesel fuel. The physical properties of DME are similar to liquefied gasoline gas (LPG), and when pressurized at a pressure of 6 bar or more, it changes from gas to liquid. Two types of high pressure pumps used in this study were independent injection type pump and a wobble plate type pump. Two high-pressure pumps with different injection types were compared. By measuring and comparing the performance changes of the two high-pressure pumps, a pump suitable for DME was selected and performance improvement measures were proposed. The changed experimental conditions to measure the performance change of the high pressure pump were increased in the units of 100 to 1,000 rpm and 100 rpm, and the experiment was performed at common rail pressures 300 and 400 bar. it was confirmed that the DME inside the fuel supply system remained in a liquid state through temperature sensors, pressure sensors, and pressure gauges. As a result of the experiment, it was confirmed that the flow rate discharged from the high-pressure fuel pump increased as the motor rotational speed increased, and the flow rate of the high-pressure fuel pump

PILOT INJECTION OF DME FOR IGNITION OF NATURAL GAS AT DUAL FUEL ENGINE-LIKE CONDITIONS

  • MORSY M. H.;AHN D. H.;CHUNG S. H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • The ignition delay of a dual fuel system has been numerically investigated by adopting a constant volume chamber as a model problem simulating diesel engine relevant conditions. A detailed chemical kinetic mechanism, consisting of 28 species and 135 elementary reactions, of dimethyl ether (DME) with methane ($CH_{4}$) sub-mechanism has been used in conjunction with the multi-dimensional reactive flow KIVA-3V code to simulate the autoignition process. The start of ignition was defined as the moment when the maximum temperature in the combustion vessel reached to 1900 K with which a best agreement with existing experiment was achieved. Ignition delays of liquid DME injected into air at various high pressures and temperatures compared well with the existing experimental results in a combustion bomb. When a small quantity of liquid DME was injected into premixtures of $CH_{4}$/air, the ignition delay times of the dual fuel system are longer than that observed with DME only, especially at higher initial temperatures. The variation in the ignition delay between DME only and dual fuel case tend to be constant for lower initial temperatures. It was also found that the predicted values of the ignition delay in dual fuel operation are dependent on the concentration of the gaseous $CH_{4}$ in the chamber charge and less dependent on the injected mass of DME. Temperature and equivalence ratio contours of the combustion process showed that the ignition commonly starts in the boundary at which near stoichiometric mixtures could exists. Parametric studies are also conducted to show the effect of additive such as hydrogen peroxide in the ignition delay. Apart from accurate predictions of ignition delay, the coupling between multi-dimensional flow and multi-step chemistry is essential to reveal detailed features of the ignition process.

Influence of Ionic Liquid as a Template on Preparation of Porous η-Al2O3 to DME Synthesis from Methanol

  • Yoo, Kye-Sang;Lee, Se-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1628-1632
    • /
    • 2010
  • Porous ${\eta}-Al_2O_3$ was synthesized by modified sol-gel method using ionic liquid as a templating material. The addition of ionic liquid assisted to increase the surface area of alumina. However, the acidity of aluminas prepared with ionic liquids was hardly affected regardless the change of its structural properties. Among the ionic liquids used in this study, 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][$PF_6$]) was the most effective ionic liquid to produce porous ${\eta}-Al_2O_3$ particles. The catalytic performance of these aluminas has been investigated in dehydration of methanol to produce dimethyl ether. The alumina prepared with [Bmim][$PF_6$] outperformed the other aluminas except ${\eta}-Al_2O_3$ without modification in this reaction.

Direct Synthesis of Dimethyl Ether in a Fixed Bed Reactor (고정층 반응기 내에서 디메틸에테르 직접 합성)

  • 최정운;이상호;심규성;명광식;김종원
    • Journal of Energy Engineering
    • /
    • v.10 no.1
    • /
    • pp.40-48
    • /
    • 2001
  • 디젤엔진에 적합한 환경 친화적 연료로 평가받고 있는 디메틸에테르(DME)를 기존의 메탄올 탈수화에 의한 간접법 대신 합성 가스로부터 직접 합성법으로 제조하였다. 합성가스에서 메탄올을 합성하는 경우에 비해 화학 평형 상의 이점 때문에 DME를 합성하는 것이 경제적이며 이는 실험 결과와 일치하였다. 기상 반응기에서 메탄올 탈수촉매의 부가에 의한 메탄올 환산 생산량은 메탄올 합성촉매에 의한 생산량에 비해 두 배 이상의 증가를 보인다. 메탄올 탈수촉매를 Cu로 개질한 효과는 없었으며, 메탄올 탈수촉매로서 순수 감마알루미나가 가장 우수한 반응성을 보였다. 반응 조건이 25$0^{\circ}C$, 30atm일 때 고려된 GHSV 범위에서 촉매 적정 혼합비는 7:3, 합성 가스의 조성비는 $H_2$/CO=1일 때 가장 좋은 선택도와 수율을 나타내었다.

  • PDF

The Effect of DME on Phase Equilibria of Methane Hydrates (DME가 메탄하이드레이트 상평형에 미치는 영향)

  • Lim, Gyegyu;Lee, Gwanghee
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.6
    • /
    • pp.660-669
    • /
    • 2012
  • Gas resources captured in the form of gas hydrates are an order of magnitude larger than the resources available from conventional resources. Focus of this research is to investigate the effect of DME on phase equilibria of methane hydrate, as well as the possibility of the use of the PRO/II computer simulation to estimate the phase equilibria. In systems containing water and a gaseous component like, for instance, methane, ethane, and propane, gas hydrates may occur, if conditions in terms of pressure and temperature are satisfied. Mixtures of gases, e.g. LPG or natural gas, are also able to form gas hydrates in the presence of water. The experiments presented here were performed at temperatures varying between 268.15K and 288.15K and at pressures varying between 1.88 MPa and 10.56 MPa. It was found that the phase equilibria of methane hydrate is influenced by the addition of DME to the system. The pressure for the equilibrium hydrate-liquid water-vapor (H - $L_w$ - V) in the system water + methane is reduced upon addition of DME. The phase equilibria of methane hydrate can be estimated by the PRO/II computer simulation, whereas those of methane hydrate containing DME or LPG can't be estimated properly.

Effect of Valve Lift and Timing on Internal Exhaust Gas Recirculation and Combustion in DME Homogeneous Charge Compression Ignition Engine (DME 예혼합 압축 착화 엔진에서 밸브 양정과 개폐시기가 내부 배기가스 재순환과 연소에 미치는 영향)

  • Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.93-100
    • /
    • 2009
  • Intake/exhaust valve timing and exhaust cam lift were changed to control the internal exhaust gas recirculation (IEGR) and combustion phase of homogeneous charge compression ignition (HCCI) engine. To measure the IEGR rate, in-cylinder gas was sampled during from intake valve close to before ignition start. The lower exhaust cam made shorter valve event than higher exhaust cam and made IEGR increase because of trapping the exhaust gas. IEGR rate was more affected by exhaust valve timing than intake valve timing and increased as exhaust valve timing advanced. In-cylinder pressure was increased near top dead center due to early close of exhaust valve. Ignition timing was more affected by intake valve timing than exhaust valve timing in case of exhaust valve lift 8.4 mm, while ignition timing was affected by both intake and exhaust valve timing in case of exhaust valve 2.5 mm. Burn duration with exhaust valve lift 2.5 mm was longer than other case due to higher IEGR rate. The fuel conversion efficiency with higher exhaust valve lift was higher than that with lower exhaust valve lift. The late exhaust and intake maximum open point (MOP) made the fuel conversion efficiency improve.

The Study of KOGAS DME Process in Small and Medium Sized Gas Field Containing $CO_2$ ($CO_2$가 함유된 중소규모 가스전을 위한 KOGAS DME Process 연구)

  • Mo, Yong-Gi;Cho, Won-Jun;Song, Taek-Yong;Baek, Young-Soon
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.4
    • /
    • pp.51-55
    • /
    • 2010
  • The global activities to reduce the $CO_2$ emission as a greenhouse gas have been various efforts. Under this circumstance, small and medium sized gas field containing $CO_2$ to develop as LNG is not economic feasibility. Particularly, for the separation of $CO_2$ in gas field, separation facilities should be installed to add. This is and increase in plant construction cost and separated $CO_2$ emission into the atmosphere is not the result of greenhouse gas reduction. When the uneconomic gas field apply the KOGAS DME process, the gas field containing $CO_2$ can be increase economic feasibility because of natural gas and $CO_2$ can be use to resource gas. The Tri-reformer produced syngas as H2 and CO in KOGAS DME process and the resource gases are natural gas, steam, oxygen and $CO_2$. The $CO_2$ is used as raw material gases from recover $CO_2$ in DME process. In this study, we investigated range of application of $CO_2$ in gas field.

HCCI Combustion of DME in a Rapid Compression and Expansion Machine (급속압축팽창기를 이용한 DME의 HCCI 연소)

  • Sung, Yong-Ha;Jung, Kil-Sung;Choi, Byung-Chul;Lim, Myung-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.8-14
    • /
    • 2007
  • Compression ignition of homogeneous charges in IC engines indicates possibilities of achieving the high efficiency of DI diesel engines with low level of NOx and particulate emissions. The objectives of this study are to further understand the characteristics of the HCCI(Homogeneous charge compression ignition) combustion and to find ways of extending the rich HCCI operation limit in an engine-like environment. DME fuel is supplied either in the form of premixture with air or directly injected in the combustion chamber of a rapid compression and expansion machine under the conditions of various equivalence ratio and injection timing. The cylinder pressure is measured and the rate of heat release is computed from the measured pressure for the analysis of the combustion characteristics. The experimental data show that the RCEM can operate without knock on mixtures of higher equivalence ratio, when DME is directly injected in the combustion chamber than introduced as a fraction of a perfect or nearly perfect premixture. Very early fuel injection timings usually employed in HCCI operation are seen to have only insignificant effects in control of ignition timing.