• 제목/요약/키워드: DM degradability

Search Result 138, Processing Time 0.028 seconds

In Situ Dry Matter, Nitrogen and Phosphorous Disappearance of Different Feeds for Ruminants

  • Islam, M.R.;Ishida, M.;Ando, S.;Nishida, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.6
    • /
    • pp.793-799
    • /
    • 2002
  • Four feeds, three concentrates (rice bran, soybean meal and flaked corn) and one forage (corn silage) were incubated in four ruminally fistulated Holstein steers over three one week periods in a 3${\times}$4 incomplete latin square design where steers served as blocks and feeds as treatment. The objectives of the study were to investigate in situ DM, N and P degradability characteristics of feeds in order to assess availability of these nutrients by ruminants. In each period, all feeds were incubated in quadruplets (corn silage in triplicates) in the rumen of each steer in a reverse order for 3, 6, 9, 12, 18, 24 and 48 h. The DM 'a' fraction was higher and lower (p<0.001) in corn silage and rice bran respectively. Although corn silage contained the lowest (p<0.01) DM 'b' fraction, flaked corn contained the highest. Rate of DM degradation of flaked corn and corn silage were half (p<0.05) of the rate of DM degradation of either rice bran or soybean meal. Potential or effective DM degradability (p<0.05 to 0.001) at various passage rates were the lowest for rice bran and the highest for soybean meal. Corn silage N 'a' and 'b' was the highest and lowest, respectively (p<0.01). N 'c' of corn silage and rice bran was higher (p<0.001) than other feeds. Potential N degradability was the lowest in flaked corn (p<0.05). P 'a' was high (p<0.01) for corn silage and rice bran. P 'b' fraction was very high (p<0.001) in soybean meal but was absent in corn silage. Availability of DM (p<0.01 or 0.001), N (p<0.001) and P (p<0.05) differed between feeds at various passage rates except P availability at k=0.02 per h (p>0.05). The results demonstrate that the availability of DM, N and P by ruminants depends on feed as well as categories of animal.

Effect of Microwave Treatment on Chemical Composition and In sacco Digestibility of Wheat Straw in Yak Cow

  • Dong, Shikui;Long, Ruijun;Zhang, Degang;Hu, Zizhi;Pu, Xiaopeng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.1
    • /
    • pp.27-31
    • /
    • 2005
  • Wheat straw was treated with microwave for 4 min and 8 min at a power of 750 W and frequency of 2,450 MHz. Chemical compositions of untreated, 4 min treated and 8 min treated straws were analyzed and in sacco degradabilities of all these straws in yak rumens were measured. Microwave treatment didn't significantly (p>0.05) affect the chemical composition of the straw. In sacco dry matter (DM) degradability of the straw after 18 h incubation in rumen was significantly (p<0.01) improved by microwave treatment. In sacco crude protein (CP) degradability of the straw was not (p>0.05) affected by microwave treatment. In sacco organic matter (OM) degradability of the straw was increased (p<0.01) by around 20% for both the 4 min and 8 min microwave treatment, that of acid detergent fibre (ADF) was increased (p<0.01) by 61.6% and 62.8%, and that of ash free ADF was enhanced by 72.1% and 69.6% for the 4 min and 8 min microwave treatment respectively. No significant difference was observed between the 4 min and 8 min microwave treatment on the degradability of DM, OM, CP, ADF and ash-free ADF of the straw.

Nutritive Evaluation of Some Browse Tree Legume Foliages Native to Semi-arid Areas in Western Tanzania

  • Rubanza, C.D.K.;Shem, M.N.;Otsyina, R.;Ichinohe, T.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.10
    • /
    • pp.1429-1437
    • /
    • 2003
  • Browse tree legume leaves from Acacia spp (A. nilotica, A. tortilis, A. polyacantha), Dichrostachys sp, Flagea villosa, Piliostigma thonningii, Harrisonia sp were evaluated for nutritive potential (chemical compositions and degradability characteristics) compared to Gliricidia sepium. Effect of tannins anti-nutritive activity on digestibility was also assessed by polyethylene glycol (PEG) tannin bioassay. Crude protein (CP), ash, neutral detergent fiber (NDF), acid detergent fiber (ADF) and acid detergent lignin (ADL) differed (p<0.05) between legume foliages. Mean CP, ash, NDF, ADF and ADL for fodder species tested were 158, 92, 385, 145, and 100 g/kg DM, respectively. CP ranged from 115 (P. thonningii) to 205 g/kg DM (G. sepium). Acacia spp had moderate CP values (g/kg DM) of 144 (A. nilotica), to high CP in A. tortilis (188) and A. polyacantha (194) comparable to G. sepium. The forages had relatively lower fiber compositions. A. nilotica had (p<0.05) lowest NDF, ADF and ADL (182, 68 and 44) compared to P. thonningii (619, 196 and 130) g/kg DM, respectively. Except G. sepium, all fodder species had detectable high phenolic and tannin contents greater than 5% DM, an upper beneficial level in animal feeding and nutrition. Mean total phenolics (TP), total tannins (TT) and condensed tannins (CT) (or proanthocyanidins) for fodder species tested were 139, 113 and 43 mg/g DM, respectively. F. villosa had (p<0.05) lowest TP and TT of 65 and 56 mg/g DM, respectively, compared to A. nilotica (237 and 236 mg/g DM, respectively). The CT varied (p<0.05) from 6 (F. villosa) to 74 mg/g DM (Dichrostachys sp). In vitro organic matter (OM) degradability (OMD) differed (p<0.05) between fodder species. G. sepium had (p<0.05) high degradability potential compared to A. polyacantha that had (p<0.05) the lowest OMD values. Forage degradability ranked: G. sepium>A. nilotica>P. thonningi>F. villosa>Dichrostachys sp>A. tortilis>A. polyacantha. Addition of PEG resulted to (p<0.05) improvement in in vitro OM digestibility (IVD). Increase in IVD was mainly due to binding action of PEG on tannins; and represents potential nutritive values previously depressed by tannins anti-nutritive activity. Browse fodder has potential as sources of ruminal nitrogen especially for ruminants consuming low quality roughages due to high protein, lower fiber compositions and high potential digestibility. However, utilization of browse supplements in ruminants is hampered by high phenolic and tannin contents. Deactivation of tannin anti-nutritive activity, possibly by feeding tanniniferous browse with other readily available nitrogen sources to dilute tannin anti-nutritive activity could improve utilization of browse fodder supplements. Further studies are needed to assess browse fodder palatability and intake, and their effect on growth performance in ruminants.

The Effect of Addition of Apple Pomace on Quality and in situ Degradability of Rice Straw Silage (사과박 첨가가 볏짚 사일리지의 품질과 in situ 소실율에 미치는 영향)

  • 조익환;황보순;이영옥;안종호;김현진;이주삼
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.20 no.4
    • /
    • pp.295-302
    • /
    • 2000
  • The quality of the rice straw silage added with apple pomace was investigated in this study and the amount of apple pomace added in different treatments were 0, 20, 40 and 60%, respectively. Crude protein contents (6.4-7.5%) of rice straw silage added with apple pomace were significantly (P<0.05) higher than that of 100%. rice straw silage (5.3%), however, crude ash contents were lower (P<0.05) in supplementation of apple pomace. The trends of changing chemical composition between raw materials and end products of silages particularly in the contents of crude protein and crude ash were more apparent in the silages added with apple pomace by 40-60%. Values of pH and the contents of lactic acid and total acid in 40-60% apple pomace added silages were 3.9-4.1, 1.0- 1.5% and 2.7-4.5%, respectively which were significantly (P<0.05) higher than those of 4.6, 0.02% and 0.34% in 100% rice straw silage, respectively. In situ dry matter (DM) and neutral detergent fiber (NDF) disappearance rates in the rumen in the treatments of 40- 60% apple pomace added silages were significantly (P<0.05) higher than those of 100% rice straw silage particularly since after 3 and 24 hour incubation on DM and NDF disappearance, respectively. Although quickly degraded fraction (a) among the treatments were not significantly different, 28.4-28.5% of slowly degraded fraction (b) and 27.2-27.4% of effective degradability (ED, k=0.08) for DM were significantly (P<0.05) higher than those of 100% rice straw silage (12.5 and 24.6% respectively). NDF was in the same trend as in DM. 31.6-63.2% of NDF for b fraction and 18.7- 19.4% for ED in 40-60% apple pomace added silages were significantly (P<0.05) higher than those of 100% rice straw silage (12.4 and 17.6% respectively). (Key words : Rice straw silage, Apple pomace, Lactic acid, In situ digestibility, Effective degradability)

  • PDF

Nutritional value and in situ degradability of oak wood roughage and its feeding effects on growth performance and behavior of Hanwoo steers during the early fattening period

  • Ju, Ye Ri;Baek, Youl Chang;Jang, Sun Sik;Oh, Young Kyoon;Lee, Sung Suk;Kim, Yong Sik;Park, Keun Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.6
    • /
    • pp.930-940
    • /
    • 2020
  • Objective: This study was conducted to evaluate changes in nutritional value and in situ dry matter (DM) degradability of oak and pine wood before and after steam-digestion process (60 min/160℃/6 atm) and feeding effect of the oak roughage on performance and behavior of Hanwoo steers. Methods: Chemical composition and tannin concentration were analyzed for oak and pine trees before and after the pretreatment. In situ DM and effective degradability of these samples were assessed using a nylon bag method. In vivo trial was performed to estimate animal performance and behavior, using steers fed total mixed ration (TMR) diets containing 0% (control), 25% (OR-25), and 50% (OR-50) of the oak roughage. Eighteen steers were allocated into nine pens (2 steers/pen, 3 pens/treatment) for 52 days according to body weight (BW) and age. Results: By the steam-digestion treatment, the neutral detergent-insoluble fiber was decreased from 86.5% to 71.5% for oak and from 92.4% to 80.5% for pine, thereby increasing non-fiber carbohydrate. In situ DM degradability of treated oak reached 38% at 72 h, whereas that of untreated oak was only 11.9%. The 0 h degradability of the treated pine increased from 5.9% to 12.1%, but the degradability was unchanged thereafter. Animal performance including BW, average daily gain, DM intake, and feed conversion ratio was not different among control and oak treatments. No differences were detected in animal behavior such as lying, standing, rumination, drinking, and eating, except walking. Walking was higher in control than oak treatments with numerically higher eating and lower lying times, probably due to bulkier characteristics of rice straw in the diet. Conclusion: This study demonstrates that the oak roughage can be substituted for 50% of total forage or 100% of rice straw in TMR diets at early fattening stage of Hanwoo steers.

Ruminal Protein Degradation Characteristics of Cell Mass from Lysine Production

  • Seo, S.;Kim, H.J.;Lee, S.Y.;Ha, Jong K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.3
    • /
    • pp.364-370
    • /
    • 2008
  • Chemical analysis and in vitro studies were conducted to investigate the nutritive value for ruminants of cell mass from lysine production (CMLP) which is a by-product of the lysine manufacturing process. Proximate analysis, protein fractionation, and in vitro protein degradation using protease from Streptomyces griseus and strained ruminal fluid were carried out to estimate ruminal protein degradability of CMLP with two reference feedstuffs-soybean meal (SBM) and fish meal (FM). Amino acid composition and pepsin-HCl degradability were also determined to evaluate postruminal availability. CMLP contained 67.8% crude protein with a major portion being soluble form (45.4% CP) which was composed of mainly ammonium nitrogen (81.8% soluble CP). The amount of nucleic acids was low (1.15% DM). The total amount of amino acids contained in CMLP was 40.60% DM, which was lower than SBM (47.69% DM) or FM (54.08% DM). CMLP was composed of mainly fraction A and fraction B2, while the protein fraction in SBM was mostly B2 and FM contained high proportions of B2 and B3 fractions. The proportion of B3 fraction, slowly degradable protein, in CP was the highest in fish meal (23.34%), followed by CMLP (7.68%) and SBM (1.46%). CMLP was degraded up to 51.40% at 18 h of incubation with Streptomyces protease, which was low compared to FM (55.23%) and SBM (83.01%). This may be due to the insoluble portion of CMLP protein being hardly degradable by the protease. The in vitro fermentation by strained ruminal fluid showed that the amount of soluble fraction was larger in CMLP (40.6%) than in SBM (17.8%). However, because the degradation rate constant of the potentially degradable fraction of CMLP (2.0%/h) was lower than that of SBM (5.8%/h), the effective ruminal protein degradability of CMLP (46.95%) was slightly lower than SBM (53.77%). Unavailable fraction in the rumen was higher in CMLP (34.0%) compared to SBM (8.8%). In vitro CP degradability of CMLP by pepsin was 80.37%, which was lower than SBM (94.42%) and FM (89.04%). The evaluation of protein degradability using different approaches indicated that soluble protein in CMLP may supply a large amount of ammonia in the rumen while insoluble protein can be by-passed from microbial attacks due to its low degradability. The results from this study suggest that CMLP can be used as a protein supplement to ruminants for supplying both non-protein nitrogen to rumen microbes and rumen undegradable protein to the host animal.

Effects of Saccharomyces cerevisiae Supplementation and Anhydrous Ammonia Treatment of Wheat Straw on In-situ Degradability and, Rumen Fermentation and Growth Performance of Yearling Lambs

  • Comert, Muazzez;Sayan, Yilmaz;Ozelcam, Hulya;Baykal, Gulsah Yegenoglu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.5
    • /
    • pp.639-646
    • /
    • 2015
  • The effects of Saccharomyces cerevisiae supplementation ($6.6{\times}10^8cfu$) and anhydrous ammonia treatment (3%) of wheat straw (WS) were investigated on in-situ dry matter (DM) degradability, and on rumen fermentation and growth performance of lambs. Rumen-fistulated Menemen sheep fed a diet with and without live yeast were used to assess the DM degradability characteristics of WS and ammonia-treated wheat straw ($WS_{NH3}$). Twenty-six yearling Menemen male lambs were fed in four groups. Lambs of control group (WS) received untreated WS without supplemental yeast, whereas other three groups were fed WS treated with anhydrous ammonia ($WS_{NH3}$ group), untreated WS and yeast (WS+YEAST group) or WS treated with anhydrous ammonia and yeast ($WS_{NH3}$+YEAST group). Supplemented live yeast (4 g/d) was added in the diet. Lambs were offered untreated or ammonia treated WS ad-libitum and concentrate was fed at 1% of live body weight. The degradability of the water-insoluble (fraction B) was significantly increased by all of the treatment groups. Potential degradability (A+B), effective DM degradability's (pe2, pe5, and pe8) and average daily weight gain increased only in $WS_{NH3}$+YEAST group (p<0.05). Voluntary DM intake was not increased by the treatments (p>0.05), but voluntary metabolizable energy and crude protein intake were increased by $WS_{NH3}$ and by $WS_{NH3}$+YEAST (p<0.05). Average daily rumen pH was not affected by any of the treatments, but average daily $NH_3$-N was significantly higher in the $WS_{NH3}$ and $WS_{NH3}$+YEAST groups, and total volatile fatty acids were significantly higher in the WS+YEAST and $WS_{NH3}$+YEAST groups. In conclusion, the improvement of feed value of WS was better by the combination of ammonia-treatment and yeast supplementation compared to either treatment alone.

Ensiling Characteristics and the In situ Nutrient Degradability of a By-product Feed-based Silage

  • Kim, Y.I.;Oh, Y.K.;Park, K.K.;Kwak, W.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.2
    • /
    • pp.201-208
    • /
    • 2014
  • This study was conducted to evaluate the ensiling characteristics and the in situ degradability of a by-product feed (BF)-based silage. Before ensilation, the BF-based mixture was composed of 50% spent mushroom substrate, 21% recycled poultry bedding, 15% ryegrass straw, 10.8% rice bran, 2% molasses, 0.6% bentonite, and 0.6% microbial inoculant on a wet basis and ensiled for up to 4 weeks. The BF-based silage contained on average 39.3% moisture, 13.4% crude protein (CP), and 52.2% neutral detergent fiber (NDF), 49% total digestible nutrient, and 37.8% physically effective $NDF_{1.18}$ on a dry matter (DM) basis. Ensiling the BF-based silage for up to 4 weeks affected (p<0.01) the chemical composition to a small extent, increased (p<0.05) the lactic acid and $NH_3$-N content, and decreased (p<0.05) both the total bacterial and lactic acid bacterial counts from $10^9$ to $10^8$ cfu/g when compared to that before ensiling. These parameters indicated that the silage was fermented and stored well during the 4-week ensiling period. Compared with rice or ryegrass straws, the BF-based silage had a higher (p<0.05) water-soluble and filterable fraction, a lower insoluble degradable DM and CP fraction (p<0.05), a lower digestible NDF (p<0.05) fraction, a higher (p<0.05) DM and CP disappearance and degradability rate, and a lower (p<0.05) NDF disappearance and degradability rate. These results indicated that cheap, good-quality BF-based roughage could be produced by ensiling SMS, RPB, rice bran, and a minimal amount of straw.

Ruminal Degradability of Tropical Feeds and Their Potential Use in Ruminant Diets

  • Chanjula, P.;Wanapat, M.;Wachirapakorn, C.;Uriyapongson, S.;Rowlinson, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.2
    • /
    • pp.211-216
    • /
    • 2003
  • The objective of this study was to determine the degradability of cassava chip (CC), cassava waste (CW), yellow sweet potato (YP), white sweet potato (WP), purple sweet potato (PP), corn meal (CM), and rice bran (RB) using in situ technique. Two ruminally fistulated steers with an average weight of $303{\pm}10kg$ were used to determine in situ degradabilities of DM and OM. Seven feed sources were weighted in nylon bags ($38{\mu}m$ pore size) and incubated ruminally for 1, 2, 4, 6, 8, 12, 24, and 48 h. The results showed that asymptote (a+b) and effective degradability (ED) of DM of energy sources ranked from the highest to the lowest; CC, YP, WP, PP, RB, CW, and CM (99.3, 92.5; 97.6, 87.9; 97.5, 87.9; 97.2, 87.8; 87.5, 63.6; 78.6, 63.0 and 81.7; 59.3, respectively) and for OM asymptote (a+b) and effective degradability (ED) were similar to those of degradation of DM (99.4, 93.4; 98.8, 89.8; 98.5, 89.4; 98.4, 88.1; 92.4, 65.8; 85.1, 66.9 and 83.6, 63.3, respectively). It was concluded that disappearance characteristic of CC was the highest and it may potentially facilitate the achievement of optimal ruminal availability of energy: protein especially with NPN for microbial protein synthesis.

Nutritional value and in situ degradability of fruit-vegetable byproducts and their feeding effects on performance of growing Hanwoo steers

  • Song, Keun Hong;Woo, Jun Sik;Kim, Ju Ri;Ryu, Gyeong Lim;Baek, Youl Chang;Oh, Young Kyoon;Kwak, Wan Sup;Park, Keun Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.6
    • /
    • pp.973-980
    • /
    • 2020
  • Objective: This study was conducted to evaluate nutritional value and in situ degradability of fruit-vegetable byproducts and their feeding effects on performance of growing Hanwoo steers. Methods: Nutritional value and in situ degradability of cabbage, Chinese cabbage and fruit-vegetable byproducts were assessed. In vivo feeding trial was also performed for 12 weeks. Thirty-six growing steers were randomly allocated into three groups according to body weight (BW) and age in 12 pens (4 replications/treatment) and assigned to one of the three dietary treatments: control (byproduct 0%), FV-B (fruit-vegetable byproduct 20%), and CA-B (cabbage peel 15% plus Chinese cabbage peel 15%, total byproduct 30%). Results: The crude protein contents of cabbage, Chinese cabbage and fruit-vegetable byproducts were 18.69%, 20.20%, and 10.07%, respectively. Concentrations of neutral detergent fiber (NDF) were higher in cabbage (22.31%) and Chinese cabbage (28.83%) than fruit-vegetable (13.94%). Higher concentrations of non-fiber carbohydrate were observed for fruit-vegetable (66.72%) than cabbage (44.93%) and Chinese cabbage byproducts (24.69%). The effective degradability (ED) of both dry matter (DM) and NDF for fruit-vegetable byproduct (DM, 84.69%; NDF, 85.62%) was higher (p<0.05) than cabbage (DM, 68.47%; NDF, 55.97%) and Chinese cabbage byproducts (DM, 68.09%; NDF, 54.22%). The DM intake was not different among treatments because the amount of feed was kept constant according to the BW of growing steers to prevent overweight during the growing period. The average daily gain during the whole experimental period was not different among treatments (1.26, 1.25, and 1.34 kg/d for control, FV-B, and CA-B). The ED of both DM and NDF degradability of the total mixed ration (TMR) diets were very similar among treatments. Feed conversion ratio during the whole period showed no significant difference among treatments. Conclusion: This study demonstrates that fruit-vegetable and cabbage byproducts up to 20% and 30% (as fed basis), respectively can be included in TMR diets for growing beef cattle.