• Title/Summary/Keyword: DLX3

Search Result 13, Processing Time 0.026 seconds

Dlx3 and Dlx5 Inhibit Adipogenic Differentiation of Human Dental Pulp Stem Cells

  • Lee, Hye-Lim;Nam, Hyun;Lee, Gene;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.37 no.1
    • /
    • pp.31-36
    • /
    • 2012
  • Dlx3 and Dlx5 are homeobox domain proteins and are well-known regulators of osteoblastic differentiation. Since possible reciprocal relationships between osteogenic and adipogenic differentiation in mesenchymal stem cells exist, we examined the regulatory role of Dlx3 and Dlx5 on adipogenic differentiation using human dental pulp stem cells. Over-expression of Dlx3 and Dlx5 stimulated osteogenic differentiation but inhibited adipogenic differentiation of human dental pulp stem cells. Dlx3 and Dlx5 suppressed the expression of adipogenic marker genes such as $C/EBP{\alpha}$, $PPAR{\gamma}$, aP2 and lipoprotein lipase. Adipogenic stimuli suppressed the mRNA levels of Dlx3 and Dlx5, whereas osteogenic stimuli enhanced the expression of Dlx3 and Dlx5 in 3T3-L1 preadipocytes. These results suggest that Dlx3 and Dlx5 exert a stimulatory effect on osteogenic differentiation of stem cells through the inhibition of adipogenic differentiation as well as direct stimulation.

Tricho-dento-osseous Syndrome Mutant Dlx3 Shows Lower Transactivation Potential but Has Longer Half-life than Wild-type Dlx3

  • Cha, Ji-Hun;Ryoo, Hyun-Mo;Woo, Kyung-Mi;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.32 no.4
    • /
    • pp.119-125
    • /
    • 2007
  • Dlx3 is a homeodomain protein and is known to play a role in development and differentiation of many tissues. Deletion of four base pairs in DLX3 (NT3198) is causally related to tricho-dento-osseous (TDO) syndrome (OMIM #190320), a genetic disorder manifested by taurodontism, hair abnormalities, and increased bone density in the cranium. The molecular mechanisms that explain the phenotypic characteristics of TDO syndrome have not been clearly determined. In this study, we examined phenotypic characteristics of wild type DLX3(wtDlx3) and 4-BP DEL DLX3 (TDO mtDlx3) in C2C12 cells. To investigate how wtDlx3 and TDO mtDlx3 differentially regulate osteoblastic differentiation, reporter assays were performed by using luciferase reporters containing the promoters of alkaline phosphatase, bone sialoprotein or osteocalcin. Both wtDlx3 and TDO mtDlx3 enhanced significantly all the reporter activities but the effect of mtDlx3 was much weaker than that of wtDlx3. In spite of these differences in reporter activity, electrophoretic mobility shift assay showed that both wtDlx3 and TDO mtDlx3 formed similar amounts of DNA binding complexes with Dlx3 binding consensus sequence or with ALP promoter oligonucleotide bearing the Dlx3 binding core sequence. TDO mtDlx3 exhibits a longer half-life than wtDlx3 and it corresponds to PESTfind analysis result showing that potential PEST sequence was missed in carboxy terminal of TDO mtDlx3. In addition, co-immunoprecipitation demonstrated that TDO mtDlx3 binds to Msx2 more strongly than wtDlx3. Taken together, though TDO mtDlx3 acted as a weaker transcriptional activator than wtDlx3 in osteoblastic cells, there is possibility that during in vivo osteoblast differentiation TDO mtDlx3 may antagonize transcriptional repressor activity of Msx2 more effectively and for longer period than wtDlx3, resulting in enhancement of osteoblast differentiation.

Estrogen Receptor α Regulates Dlx3-Mediated Osteoblast Differentiation

  • Lee, Sung Ho;Oh, Kyo-Nyeo;Han, Younho;Choi, You Hee;Lee, Kwang-Youl
    • Molecules and Cells
    • /
    • v.39 no.2
    • /
    • pp.156-162
    • /
    • 2016
  • Estrogen receptor ${\alpha}$ (ER-${\alpha}$), which is involved in bone metabolism and breast cancer, has been shown to have transcriptional targets. Dlx3 is essential for the skeletal development and plays an important role in osteoblast differentiation. Various osteogenic stimulators and transcription factors can induce the protein expression of Dlx3. However, the regulatory function of ER-${\alpha}$ in the Dlx3 mediated osteogenic process remains unknown. Therefore, we investigated the regulation of Dlx3 and found that ER-${\alpha}$ is a positive regulator of Dlx3 transcription in BMP2-induced osteoblast differentiation. We also found that ER-${\alpha}$ interacts with Dlx3 and increases its transcriptional activity and DNA binding affinity. Furthermore, we demonstrated that the regulation of Dlx3 activity by ER-${\alpha}$ is independent of the ligand (estradiol) binding domain. These results indicate that Dlx3 is a novel target of ER-${\alpha}$, and that ER-${\alpha}$ regulates the osteoblast differentiation through modulation of Dlx3 expression and/or interaction with Dlx3.

Dlx3 Plays a Role as a Positive Regulator of Osteoclast Differentiation

  • Cha, Ji-Hun;Ryoo, Hyun-Mo;Woo, Kyung-Mi;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.32 no.3
    • /
    • pp.85-91
    • /
    • 2007
  • Dlx3 is a homeodomain protein and is known to playa role in development and differentiation of many tissues. Deletion of four base pairs in DLX3 (NT3198) is causally related to tricho-dento-osseous (TDO) syndrome (OMIM # 190320), a genetic disorder manifested by taurodontism, hair abnormalities, and increased bone density in the cranium. Although the observed defects of TDO syndrome involves bone, little is known about the role of Dlx3 in bone remodeling process. In this study, we examined the effect of wild type DLX3 (wtDlx3) expression on osteoclast differentiation and compared it with that of 4-BP DEL DLX3 (TDO mtDlx3). To examine whether Dlx3 is expressed during RANKL-induced osteoclast differentiation, RAW264.7 cells were cultured in the presence of receptor activator of nuclear factor-B ligand (RANKL). Dlx3 protein level increased slightly after RANKL treatment for 1 day and peaked when the fusion of prefusion osteoclasts actively progressed. When wtDlx3 and TDO mtDlx3 were overexpressed in RAW264.7 cells, they enhanced RANKL-induced osteoclastogenesis and the expression of osteoclast differentiation marker genes such as calcitonin receptor, vitronectin receptor and cathepsin K. Since osteoclast differentiation is critically regulated by the balance between RANKL and osteoprotegerin (OPG), we examined the effect of Dlx3 overexpression on expression of RANKL and OPG in C2C12 cells in the presence of bone morphogenetic protein 2. Overexpression of wtDlx3 enhanced RANKL mRNA expression while slightly suppressed OPG expression. However, TDO mtDlx3 did not exert significant effects. This result suggests that inability of TDO mtDlx3 to regulate expression of RANKL and OPG may contribute to increased bone density in TDO syndrome patients. Taken together, it is suggested that Dlx3 playa role as a positive regulator of osteoclast differentiation via up-regulation of osteoclast differentiation-associated genes in osteoclasts, as well as via increasing the ratio of RANKL to OPG in osteoblastic cells.

The Expression of Matrix Metalloprotease 20 is Stimulated by Wild Type but not by 4 bp- or 2 bp-Deletion Mutant DLX3

  • Park, Hyun-Jung;Ryoo, Hyun-Mo;Woo, Kyung-Mi;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.34 no.1
    • /
    • pp.21-28
    • /
    • 2009
  • Mutations in DLX3 are associated with both autosomal dominant hypoplastic hypomaturation amelogenesis imperfecta (ADHHAI) and tricho-dento-osseous (TDO) syndrome. ADHHAI is caused by a c.561_562delCT (2bp-del DLX3) mutation whereas TDO syndrome is associated with a c.571_574delGGGG (4bp-del DLX3) mutation. However, although the causal relationships between DLX3 and an enamel phenotype have been established, the pathophysiological role of DLX3 mutations in enamel development has not yet been clarified. In our current study, we prepared expression vectors for wild type and deletion mutant DLX3 products (4bp-del DLX3, 2bp-del DLX3) and examined the effects of their overexpression on the expression of the enamel matrix proteins and proteases. Wild type DLX3 enhanced the expression of matrix metalloprotease 20 (MMP20) mRNA and protein in murine ameloblast-like cells. However, neither a 4bp-del nor 2bp-del DLX3 increased MMP20 expression. Wild type DLX3, but not the above DLX3 mutants, also increased the activity of reporters containing 1.5 kb or 0.5 kb of the MMP20 promoter. An examination of protein stability showed that the half-life of wild type DLX3 protein was less than 12 h whilst that of both deletion mutants was longer than 24 h. Endogenous Dlx3 was also found to be continuously expressed during ameloblast differentiation. Since inactivating mutations in the gene encoding MMP20 are associated with amelogenesis imperfecta, the inability of 4bp-del or 2bp-del DLX3 to induce MMP20 expression suggests a possible involvement of such mutations in the enamel phenotype associated with TDO syndrome or ADHHAI.

THE ROLE OF TRANSCRIPTION FACTOR MSX2 AND DLX5 IN CALVARIAL BONE AND SUTURE DEVELOPMENT (두개골 및 두개봉합부 초기발육과정에서의 전사조절인자인 Msx2와 Dlx5의 역할)

  • Song, Min-Ho;Park, Mi-Hyun;Nam, Soon-Hyeun;Kim, Young-Jin;Ryoo, Hyun-Mo;Kim, Hyun-Jung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.3
    • /
    • pp.391-405
    • /
    • 2003
  • Craniosynostosis, known as a premature fusion of cranial sutures, is a developmental disorder characterized by precocious differentiation and mineralization of osteoblasts in the calvarial sutures. Recent genetic studies have demonstrated that mutation in the homeobox gene Msx2 causes Boston-type human craniosynostosis. Additionally, the phenotype of Dlx5 homozygote mutant mouse presents craniofacial abnormalities including a delayed ossification of calvarial bone. Furthermore transcription of osteocalcin, a mature osteoblast marker, is reciprocally regulated by the homeodomain proteins Msx2 and Dlx5. These facts suggest important roles of osteocalcin, Msx2 and Dlx5 genes in the calvarial bone growth and suture morphogenesis. To elucidate the function of these molecules in the early morphogenesis of mouse cranial sutures, we have first analyzed by in situ hybridization the expression of osteocalcin, Msx2 and Dlx5 genes in the developing parietal bone and sagittal suture of mouse calvaria during the embryonic (E15-E18) stage. Osteocalcin mRNA was found in the periosteum of parietal bones from E15, and gradually more highly expressed with aging. Msx2 mRNA was intensely expressed in the sutural mesenchyme, osteogenic fronts and mildly expressed in the dura mater during the embryonic stage. Dlx5 mRNA was intensely expressed osteogenic fronts and the periostem of parietal bones. To further examine the upstream signaling molecules of transcription factor Msx2 and Dlx5, we have done in vitro experiments in E15.5 mouse calvarial explants. Interestingly, implantation of BMP2-, BMP4-soaked beads onto the osteogenic fronts after 48 hours organ culture induced etopic expressions of Msx2 and Dlx5 genes. On the other hand, overexpression of $TGF{\beta}1$, GDF-6, -7, FGF-2, -4 and Shh did not induce the expression of Msx2 and Dlx5. Taken together. these data indicate that transcription factor Msx2 and Dlx5 play critical roles in the calvarial bone and suture development, and that BMP siganling is involved in the osteogenesis of calvarial bones and the maintenance of cranial sutures through regulating these two transcriotpn factors. Furthermore, different expression patterns between Msx2 and Dlx5 suggest their specific functions in the osteoblast differentiation.

  • PDF

Effect of Cryptochlorogenic Acid Extracted from Fruits of Sorbus commixta on Osteoblast Differentiation (마가목 열매에서 추출한 Cryptochlorogenic Acid 처리에 의한 조골세포 분화 촉진 효능)

  • Kim, Kyeong-Min;Kim, Tae Hoon;Jang, Won-Gu
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.3
    • /
    • pp.314-319
    • /
    • 2017
  • Chlorogenic acid, a well-known polyphenol, and its derivatives, ester of caffeic acid on quinic acid moiety, are abundant in coffee, tea, fruits, and various vegetables. This study examined the effects of cryptochlorogenic acid (CCA) on osteoblast differentiation. CCA-induced mRNA expression levels of osteogenic genes in MC3T3E1 and C3H10T1/2 cells were determined by RT-PCR and qPCR. CCA regulated expression of key osteogenic genes in the early stage of differentiation, including distal-less homeobox 5 (Dlx5), DNA-binding protein inhibitor (Id1), and runt-related transcription factor 2 (Runx2). These results suggest that CCA may enhance osteoblast differentiation through expression of osteogenic genes such as Id1, Dlx5, and Runx2, especially in the early stage.

GPS Surveying by A Point Positioning (일점측위에 의한 GPS측정)

  • Lee, Y.H.;Mun, D.Y.
    • Journal of Korean Port Research
    • /
    • v.12 no.1
    • /
    • pp.119-130
    • /
    • 1998
  • As a satellite positioning system, GPS is designed to provide the information on three dimensional position, velocity, and time all over the world. The purpose of this paper is to obtain what day has the best accuracy and what time has the best accuracy of measuring of forteen-twenty mimutes for effective using of MAGELLAN G.P.S NAV DLX-10 system. The result of measurement maximum deviation value from November, 1997 to March, 1998 that latitude deviation is 3' .75 and longitude deviation is 2' .1 And the result of measurement maximum deviation value during fourteen minutes of April 29, 1998 that latitude deviation is 3' .75 and longitude deviation is 1' .9. The result of measurement maximum deviation value during twenty minutes of May 6, 1998 that latitude deviation is 4' .75 and longitude deviation is 2' .1 and that is provid 3' .25, 4' .1 to May 13, 1998. So, we expect efficient use of horizontal position for navigation.

  • PDF

FUNCTION OF RUNX2 AND OSTERIX IN OSTEOGENESIS AND TEETH (치아와 골형성에서의 Runx2와 Osterix의 기능)

  • Kim, Jung-Eun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.4
    • /
    • pp.381-385
    • /
    • 2007
  • Bone is a dynamic organ that bone remodeling occurs throughout life and involves the process in which the bone matrix is broken down through resorption by osteoclasts and then built back again through bone formation by osteoblasts. Usually these two processes balance each other and a stable level of bone mass is maintained. We here discuss transcription factors involved in regulating the osteoblast differentiation pathway. Runx2 is a transcription factor which is essential in skeletal development by regulating osteoblast differentiation and chondrocyte maturation. Its companion subunit, Cbf${\beta}$ is needed for an early step in osteoblast differentiation pathway. Whereas Osterix(Osx) is a new identified osteoblast-specific transcription factor which is required for the differentiation of preosteoblasts into more mature and functional osteoblasts. We also discuss other transcription factors, Msx1 and 2, Dlx5 and 6, Twist, and Sp3 that affect skeletal patterning and development. Understanding the characteristics of mice in which these transcription factors are inactivated should help define their role in bone physiology and pathology of bone defects.

Increase in Neurogenesis of Neural Stem Cells Cultured from Postnatal Mouse Subventricular Zone by Nifedipine (L-type 칼슘 채널을 저해하는 저해제, nifedipine에 의한 쥐 뇌실하 영역 신경줄기세포의 신경세포로의 분화 촉진)

  • Park, Ki-Youb;Kim, Man Su
    • Journal of Life Science
    • /
    • v.32 no.2
    • /
    • pp.108-118
    • /
    • 2022
  • The subventricular zone (SVZ) in the brain contains neural stem cells (NSCs) that generate new neurons throughout one's lifetime. Many extracellular and intracellular factors that affect cell proliferation and neuronal differentiation of NSCs are already well-known. Recently, L-type calcium channels have been reported to regulate neural development and are present in NSCs, differentiating neuroblasts, and mature neurons in the SVZ. Nifedipine, a blocker of L-type calcium channels, has been long used as a therapeutic drug for hypertension. However, studies on the use of nifedipine to inhibit L-type calcium channels of NSCs are lacking. Herein, we treated NSCs cultured from mouse postnatal SVZ with nifedipine during neuronal differentiation. Nifedipine increased the number of Tuj1-positive neurons but did not significantly change the number of Olig2-positive oligodendrocytes. Nifedipine increased cell division during early differentiation, which was detected using the 5-ethynyl-2'-deoxyuridine incorporation assay and immunocytochemistry assessment by staining the cells with phosphorylated histone H3, a mitosis marker. Nifedipine increased the transcription of Dlx2, a neurogenic transcription factor, and the level of Mash1, a marker for early neurogenesis. In addition to nifedipine, verapamil, which is also an L-type calcium channel blocker, showed a slight increase in neurogenesis, but its statistical significance was very low. In contrast, pimozide, a T-type calcium channel blocker, did not affect neurogenesis, although T-type calcium channel genes Cav3.1, Cav3.2, and Cav3.3 were expressed. In summary, nifedipine might promote the neuronal fate of NSCs during early differentiation and calcium signaling through L-type calcium channels might be involved in neuronal differentiation, especially during the early stages of differentiation.