DOI QR코드

DOI QR Code

Estrogen Receptor α Regulates Dlx3-Mediated Osteoblast Differentiation

  • Lee, Sung Ho (College of Pharmacy and Research Institute of Drug Development, Chonnam National University) ;
  • Oh, Kyo-Nyeo (College of Pharmacy and Research Institute of Drug Development, Chonnam National University) ;
  • Han, Younho (College of Pharmacy and Research Institute of Drug Development, Chonnam National University) ;
  • Choi, You Hee (College of Pharmacy and Research Institute of Drug Development, Chonnam National University) ;
  • Lee, Kwang-Youl (College of Pharmacy and Research Institute of Drug Development, Chonnam National University)
  • Received : 2015.10.21
  • Accepted : 2015.11.03
  • Published : 2016.02.29

Abstract

Estrogen receptor ${\alpha}$ (ER-${\alpha}$), which is involved in bone metabolism and breast cancer, has been shown to have transcriptional targets. Dlx3 is essential for the skeletal development and plays an important role in osteoblast differentiation. Various osteogenic stimulators and transcription factors can induce the protein expression of Dlx3. However, the regulatory function of ER-${\alpha}$ in the Dlx3 mediated osteogenic process remains unknown. Therefore, we investigated the regulation of Dlx3 and found that ER-${\alpha}$ is a positive regulator of Dlx3 transcription in BMP2-induced osteoblast differentiation. We also found that ER-${\alpha}$ interacts with Dlx3 and increases its transcriptional activity and DNA binding affinity. Furthermore, we demonstrated that the regulation of Dlx3 activity by ER-${\alpha}$ is independent of the ligand (estradiol) binding domain. These results indicate that Dlx3 is a novel target of ER-${\alpha}$, and that ER-${\alpha}$ regulates the osteoblast differentiation through modulation of Dlx3 expression and/or interaction with Dlx3.

Keywords

References

  1. Bjornstrom, L., and Sjoberg, M. (2002). Mutations in the estrogen receptor DNA-binding domain discriminate between the classical mechanism of action and cross-talk with Stat5b and activating protein 1 (AP-1). J. Biol. Chem. 277, 48479-48483. https://doi.org/10.1074/jbc.C200570200
  2. Chang, W., Parra, M., Centrella, M., and McCarthy, T.L. (2005). Interactions between CCAAT enhancer binding protein delta and estrogen receptor alpha control insulin-like growth factor I (igf1) and estrogen receptor-dependent gene expression in osteoblasts. Gene 345, 225-235. https://doi.org/10.1016/j.gene.2004.11.017
  3. Chen, T.K., Smith, L.M., Gebhardt, D.K., Birrer, M.J., and Brown, P.H. (1996). Activation and inhibition of the AP-1 complex in human breast cancer cells. Mol. Carcinog. 15, 215-226. https://doi.org/10.1002/(SICI)1098-2744(199603)15:3<215::AID-MC7>3.0.CO;2-G
  4. Choi, S.J., Song, I.S., Ryu, O.H., Choi, S.W., Hart, P.S., Wu, W.W., Shen, R.F., and Hart, T.C. (2008). A 4 bp deletion mutation in DLX3 enhances osteoblastic differentiation and bone formation in vitro. Bone 42, 162-171. https://doi.org/10.1016/j.bone.2007.08.047
  5. Choi, S.J., Roodman, G.D., Feng, J.Q., Song, I.S., Amin, K., Hart, P.S., Wright, J.T., Haruyama, N., and Hart, T.C. (2009). In vivo impact of a 4 bp deletion mutation in the DLX3 gene on bone development. Dev. Biol. 325, 129-137. https://doi.org/10.1016/j.ydbio.2008.10.014
  6. Choi, Y.H., Choi, H.J., Lee, K.Y., and Oh, J.W. (2012). Akt1 regulates phosphorylation and osteogenic activity of Dlx3. Biochem. Biophys. Res. Commun. 425, 800-805. https://doi.org/10.1016/j.bbrc.2012.07.155
  7. Dao, T.T., Lee, K.Y., Jeong, H.M., Nguyen, P.H., Tran, T.L., Thuong, P.T., Nguyen, B.T., and Oh, W.K. (2011). ent-Kaurane diterpenoids from Croton tonkinensis stimulate osteoblast differentiation. J. Nat. Prod. 74, 2526-2531. https://doi.org/10.1021/np200667f
  8. Depew, M.J., Lufkin, T., and Rubenstein, J.L. (2002). Specification of jaw subdivisions by Dlx genes. Science 298, 381-385. https://doi.org/10.1126/science.1075703
  9. Ferriere, F., Habauzit, D., Pakdel, F., Saligaut, C., and Flouriot, G. (2013). Unliganded estrogen receptor alpha promotes PC12 survival during serum starvation. PLoS One 8, e69081. https://doi.org/10.1371/journal.pone.0069081
  10. Ghoul-Mazgar, S., Hotton, D., Lezot, F., Blin-Wakkach, C., Asselin, A., Sautier, J.M., and Berdal, A. (2005). Expression pattern of Dlx3 during cell differentiation in mineralized tissues. Bone 37, 799-809. https://doi.org/10.1016/j.bone.2005.03.020
  11. Gohel, A., McCarthy, M.B., and Gronowicz, G. (1999). Estrogen prevents glucocorticoid-induced apoptosis in osteoblasts in vivo and in vitro. Endocrinology 140, 5339-5347. https://doi.org/10.1210/endo.140.11.7135
  12. Guemes, M., Garcia, A.J., Rigueur, D., Runke, S., Wang, W., Zhao, G., Mayorga, V.H., Atti, E., Tetradis, S., Peault, B., et al. (2014). GATA4 is essential for bone mineralization via ERalpha and TGFbeta/BMP pathways. J. Bone Miner. Res. 29, 2676-2687. https://doi.org/10.1002/jbmr.2296
  13. Hassan, M.Q., Javed, A., Morasso, M.I., Karlin, J., Montecino, M., van Wijnen, A.J., Stein, G.S., Stein, J.L., and Lian, J.B. (2004). Dlx3 transcriptional regulation of osteoblast differentiation: temporal recruitment of Msx2, Dlx3, and Dlx5 homeodomain proteins to chromatin of the osteocalcin gene. Mol. Cell Biol. 24, 9248-9261. https://doi.org/10.1128/MCB.24.20.9248-9261.2004
  14. Jeong, H.M., Han, E.H., Jin, Y.H., Hwang, Y.P., Kim, H.G., Park, B.H., Kim, J.Y., Chung, Y.C., Lee, K.Y., and Jeong, H.G. (2010). Saponins from the roots of Platycodon grandiflorum stimulate osteoblast differentiation via p38 MAPK- and ERK-dependent RUNX2 activation. Food Chem. Toxicol. 48, 3362-3368. https://doi.org/10.1016/j.fct.2010.09.005
  15. Kato, S., Endoh, H., Masuhiro, Y., Kitamoto, T., Uchiyama, S., Sasaki, H., Masushige, S., Gotoh, Y., Nishida, E., Kawashima, H., et al. (1995). Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270, 1491-1494. https://doi.org/10.1126/science.270.5241.1491
  16. Kelly, M.J., and Levin, E.R. (2001). Rapid actions of plasma membrane estrogen receptors. Trends Endocrinol. Metab. 12, 152-156. https://doi.org/10.1016/S1043-2760(01)00377-0
  17. Khosla, S. (2013). Pathogenesis of age-related bone loss in humans. J. Gerontol. A Biol. Sci. Med. Sci. 68, 1226-1235. https://doi.org/10.1093/gerona/gls163
  18. Kousteni, S., Bellido, T., Plotkin, L.I., O'Brien, C.A., Bodenner, D.L., Han, L., Han, K., DiGregorio, G.B., Katzenellenbogen, J.A., Katzenellenbogen, B.S., et al. (2001). Nongenotropic, sexnonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 104, 719-730.
  19. Kousteni, S., Chen, J.R., Bellido, T., Han, L., Ali, A.A., O'Brien, C.A., Plotkin, L., Fu, Q., Mancino, A.T., Wen, Y., et al. (2002). Reversal of bone loss in mice by nongenotropic signaling of sex steroids. Science 298, 843-846. https://doi.org/10.1126/science.1074935
  20. Kousteni, S., Almeida, M., Han, L., Bellido, T., Jilka, R.L., and Manolagas, S.C. (2007). Induction of osteoblast differentiation by selective activation of kinase-mediated actions of the estrogen receptor. Mol. Cell Biol. 27, 1516-1530. https://doi.org/10.1128/MCB.01550-06
  21. Kumar, V., Green, S., Stack, G., Berry, M., Jin, J.R., and Chambon, P. (1987). Functional domains of the human estrogen receptor. Cell 51, 941-951. https://doi.org/10.1016/0092-8674(87)90581-2
  22. Lambertini, E., Penolazzi, L., Tavanti, E., Schincaglia, G.P., Zennaro, M., Gambari, R., and Piva, R. (2007). Human estrogen receptor alpha gene is a target of Runx2 transcription factor in osteoblasts. Exp. Cell Res. 313, 1548-1560. https://doi.org/10.1016/j.yexcr.2007.02.002
  23. Lambertini, E., Tavanti, E., Torreggiani, E., Penolazzi, L., Gambari, R., and Piva, R. (2008). ERalpha and AP-1 interact in vivo with a specific sequence of the F promoter of the human ERalpha gene in osteoblasts. J. Cell Physiol. 216, 101-110. https://doi.org/10.1002/jcp.21379
  24. Lee, S.K., Choi, H.S., Song, M.R., Lee, M.O., and Lee, J.W. (1998). Estrogen receptor, a common interaction partner for a subset of nuclear receptors. Mol. Endocrinol. 12, 1184-1192. https://doi.org/10.1210/mend.12.8.0146
  25. Lee, S.H., Choi, Y.H., Kim, Y.J., Choi, H.S., Yeo, C.Y., and Lee, K.Y. (2013). Prolyl isomerase Pin1 enhances osteoblast differentiation through Runx2 regulation. FEBS Lett. 587, 3640- 3647. https://doi.org/10.1016/j.febslet.2013.09.040
  26. Li, H., Jeong, H.M., Choi, Y.H., Kim, J.H., Choi, J.K., Yeo, C.Y., Jeong, H.G., Jeong, T.C., Chun, C., and Lee, K.Y. (2014). Protein kinase a phosphorylates Dlx3 and regulates the function of Dlx3 during osteoblast differentiation. J. Cell. Biochem. 115, 2004-2011.
  27. Matsuda, T., Yamamoto, T., Muraguchi, A., and Saatcioglu, F. (2001). Cross-talk between transforming growth factor-beta and estrogen receptor signaling through Smad3. J. Biol. Chem. 276, 42908-42914. https://doi.org/10.1074/jbc.M105316200
  28. McCarthy, T.L., Chang, W.Z., Liu, Y., and Centrella, M. (2003). Runx2 integrates estrogen activity in osteoblasts. J. Biol. Chem. 278, 43121-43129. https://doi.org/10.1074/jbc.M306531200
  29. McCarthy, T.L., Kallen, C.B., and Centrella, M. (2011). beta-Catenin independent cross-control between the estradiol and Wnt pathways in osteoblasts. Gene 479, 16-28. https://doi.org/10.1016/j.gene.2011.02.002
  30. Moore, R.L., and Faller, D.V. (2013). SIRT1 represses estrogensignaling, ligand-independent ERalpha-mediated transcription, and cell proliferation in estrogen-responsive breast cells. J. Endocrinol. 216, 273-285. https://doi.org/10.1530/JOE-12-0102
  31. Panganiban, G., and Rubenstein, J.L. (2002) Developmental functions of the Distal-less/Dlx homeobox genes. Development 129, 4371-4386.
  32. Price, J.S., Sugiyama, T., Galea, G.L., Meakin, L.B., Sunters, A., and Lanyon, L.E. (2011). Role of endocrine and paracrine factors in the adaptation of bone to mechanical loading. Curr. Osteoporos. Rep. 9, 76-82. https://doi.org/10.1007/s11914-011-0050-7
  33. Robinson, G.W., and Mahon, K.A. (1994). Differential and overlapping expression domains of Dlx-2 and Dlx-3 suggest distinct roles for Distal-less homeobox genes in craniofacial development. Mech. Dev. 48, 199-215. https://doi.org/10.1016/0925-4773(94)90060-4
  34. Robledo, R.F., Rajan, L., Li, X., and Lufkin, T. (2002). The Dlx5 and Dlx6 homeobox genes are essential for craniofacial, axial, and appendicular skeletal development. Genes Dev. 16, 1089-1101. https://doi.org/10.1101/gad.988402
  35. Schuur, E.R., Loktev, A.V., Sharma, M., Sun, Z., Roth, R.A., and Weigel, R.J. (2001). Ligand-dependent interaction of estrogen receptor-alpha with members of the forkhead transcription factor family. J. Biol. Chem. 276, 33554-33560. https://doi.org/10.1074/jbc.M105555200
  36. Schwabe, J.W., Chapman, L., Finch, J.T., Rhodes, D., and Neuhaus, D. (1993). DNA recognition by the oestrogen receptor: from solution to the crystal. Structure 1, 187-204. https://doi.org/10.1016/0969-2126(93)90020-H
  37. Smith, E.P., Boyd, J., Frank, G.R., Takahashi, H., Cohen, R.M., Specker, B., Williams, T.C., Lubahn, D.B., and Korach, K.S. (1994). Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N. Engl. J. Med. 331, 1056- 1061. https://doi.org/10.1056/NEJM199410203311604
  38. Takai, H., Matsumura, H., Matsui, S., Kim, K.M., Mezawa, M., Nakayama, Y., and Ogata, Y. (2014). Unliganded estrogen receptor alpha stimulates bone sialoprotein gene expression. Gene 539, 50-57. https://doi.org/10.1016/j.gene.2014.01.063
  39. Vico, L., and Vanacker, J.M. (2010). Sex hormones and their receptors in bone homeostasis: insights from genetically modified mouse models. Osteoporos Int. 21, 365-372. https://doi.org/10.1007/s00198-009-0963-5
  40. Weigel, N.L. (1996). Steroid hormone receptors and their regulation by phosphorylation. Biochem. J. 319 (Pt 3), 657-667. https://doi.org/10.1042/bj3190657
  41. Windahl, S.H., Saxon, L., Borjesson, A.E., Lagerquist, M.K., Frenkel, B., Henning, P., Lerner, U.H., Galea, G.L., Meakin, L.B., Engdahl, C., et al. (2013). Estrogen receptor-alpha is required for the osteogenic response to mechanical loading in a ligandindependent manner involving its activation function 1 but not 2. J. Bone Miner Res. 28, 291-301. https://doi.org/10.1002/jbmr.1754
  42. Wurtz, J.M., Bourguet, W., Renaud, J.P., Vivat, V., Chambon, P., Moras, D., and Gronemeyer, H. (1996). A canonical structure for the ligand-binding domain of nuclear receptors. Nat. Struct. Biol. 3, 87-94. https://doi.org/10.1038/nsb0196-87
  43. Wurtz, J.M., Egner, U., Heinrich, N., Moras, D., and Mueller- Fahrnow, A. (1998). Three-dimensional models of estrogen receptor ligand binding domain complexes, based on related crystal structures and mutational and structure-activity relationship data. J. Med. Chem. 41, 1803-1814. https://doi.org/10.1021/jm970406v
  44. Yamamoto, T., Saatcioglu, F., and Matsuda, T. (2002). Cross-talk between bone morphogenic proteins and estrogen receptor signaling. Endocrinology 143, 2635-2642. https://doi.org/10.1210/endo.143.7.8877
  45. Zhou, S., Zilberman, Y., Wassermann, K., Bain, S.D., Sadovsky, Y., and Gazit, D. (2001). Estrogen modulates estrogen receptor alpha and beta expression, osteogenic activity, and apoptosis in mesenchymal stem cells (MSCs) of osteoporotic mice. J. Cell Biochem. Suppl. 36, 144-155.

Cited by

  1. Asymmetric DNA methylation between sister chromatids of metaphase chromosomes in mouse embryos upon Bisphenol A action 2017, https://doi.org/10.1016/j.reprotox.2017.08.017
  2. Flightless-I governs cell fate by recruiting the SUMO isopeptidase SENP3 to distinct HOX genes vol.10, pp.1, 2017, https://doi.org/10.1186/s13072-017-0122-8
  3. Isopsoralen Enhanced Osteogenesis by Targeting AhR/ERα vol.23, pp.10, 2018, https://doi.org/10.3390/molecules23102600
  4. 8-Prenylgenistein, a prenylated genistein derivative, exerted tissue selective osteoprotective effects in ovariectomized mice vol.9, pp.36, 2016, https://doi.org/10.18632/oncotarget.24823
  5. MiR-26b-3p regulates osteoblast differentiation via targeting estrogen receptor α vol.111, pp.5, 2019, https://doi.org/10.1016/j.ygeno.2018.07.003