• Title/Summary/Keyword: DLP 3D printer

Search Result 29, Processing Time 0.03 seconds

Development of Multi-Material DLP 3D Printer (다중재료 DLP 3차원 프린터의 개발)

  • Park, Se-Won;Jung, Min-Woo;Son, Yong-Un;Kang, Tae-Young;Lee, Chibum
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.100-107
    • /
    • 2017
  • 3D printing is a technology that converts a computer-generated 3D model into a real object with additive manufacturing technology. A majority of 3D printing technologies uses one material, and this is considered a limitation. In this study, we developed a multi-material 3D printer by adopting dual resin vat and cleaning system with DLP (Digital Light Processing) 3D printing technology. The developed multi-material DLP 3D printer is composed of a manufacturing system, cleaning system, transporting system, and automatic resin recharging system. Various 3D structures were 3D printed with two materials, thus demonstrating the potential. Printing performance of the multi-material DLP 3D printer was studied by performing a comparative surface roughness test and tension test on specimens composed of one material as well as those composed of two materials.

Assessment of Internal Fitness on Resin Crown Fabricated by Digital Light Processing 3D Printer

  • Kang, Wol;Kim, Min-Su;Kim, Won-Gi
    • Journal of dental hygiene science
    • /
    • v.19 no.4
    • /
    • pp.238-244
    • /
    • 2019
  • Background: Recently, three-dimensional (3D) printing has been hailed as a disruptive technology in dentistry. Among 3D printers, a digital light processing (DLP) 3D printer has certain advantages, such as high precision and relatively low cost. Therefore, the latest trend in resin crown manufacturing is the use of DLP 3D printers. However, studies on the internal fitness of such resin crowns are insufficient. The recently introduced 3D evaluation method makes it possible to visually evaluate the error of the desired area. The purpose of this study is to evaluate the internal fitness of resin crowns fabricated a by DLP 3D printer using the 3D evaluation method. Methods: The working model was chosen as the maxillary molar implant model. A total of 20 resin crowns were manufactured by dividing these into two groups. One group was manufactured by subtractive manufacturing system (PMMA), while the other group was manufactured by additive manufacturing system, which uses a DLP 3D printer. Resin crowns data were measured using a 3D evaluation program. Internal fitness was calculated by root mean square (RMS). The RMS was calculated using the Geomagic Verify software, and the mean and standard deviation (SD) were measured. For statistical analysis, IBM SPSS Statistics for Windows ver. 22.0 (IBM Corp., USA) was used. Then, independent t-test was performed between the two groups. Results: The mean±SD of the RMS were 41.51±1.51 and 43.09±2.32 for PMMA and DLP, respectively. There was no statistically significant difference between PMMA and DLP. Conclusion: Evaluation of internal fitness of the resin crown made using a DLP 3D printer and subtractive manufacturing system showed no statistically significant differences, and clinically acceptable results were obtained.

A Study of Three-dimensional evaluation of the accuracy of resin provisional restorations fabricated with the DLP printer (DLP 프린터로 제작된 레진 임시수복물의 3차원적 정확도 평가)

  • Kang, Wol;Lee, Hee-Kyung
    • Journal of Technologic Dentistry
    • /
    • v.42 no.1
    • /
    • pp.35-41
    • /
    • 2020
  • Purpose: The purpose of this study was to evaluate the accuracy of the DLP 3D printer by conducting 3-dimensional assesment of resin provisional restorations. Methods: The first premolar of the maxillary was prepared for the abutment. The abutment was scanned by using a scanner. The provisional restoration was designed by using CAD software. A total of 16 resin provisional restorations were produced using ZD200 and Veltz DLP 3D printer. Scanning was done of resin provisional restorations and 3-dimensional measurement was conducted for accuracy. The mean (SD) of RMS was reported for each group. Independent t-test was used to assess the statistical significance of the results. All analyses were done using SPSS 22.0. Results: The mean ± SD of RMS value for the accuracy of the resin provisional restorations that was fabricated by using ZD200 and Veltz DLP 3D printer were 50.85.±4.64㎛ and 70.33±6.31㎛. Independent t-test showed significant differences between groups(p<0.001). Conclusion: The resin provisional restorations made with DLP 3D printers showed clinically acceptable accuracy.

The Influence of Experiment Variables on DLP 3D Printing using ART Resin (ART 수지의 DLP 3D Printing 가공 시 실험변수의 영향)

  • Shin, Geun-Sik;Kweon, Hyun-Kyu;Kang, Yong-Goo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.101-108
    • /
    • 2017
  • Recently, the patent rights for 3D printing technology have expired, while 3D printers with RP (Rapid Prototyping or Additive Manufacturing) and 3D printing technologies are receiving attention. In particular, the development of 3D printers is rapid in Korea, thanks to the increasing sales and popularity of FDM (Fused Deposition Modeling or Fused Filament Fabrication) 3D printers. However, the quality and productivity of the FDM 3D Printer are not good, so customers prefer the DLP (Digital Light Processing) method to avoid these shortcomings. The DLP method has high quality and productivity. However, because of the stereolithography equipment, it has few studies compared to optimal values for elements then FDM 3D printing study. In this study, to find the optimal conditions for 3D printing with the DLP method, the aim is to obtain the optimal values (strength, final time, quality) by changing the light exposure time, layer thickness, and z-axis speed.

Dimensional Characteristics of 3D Printing by FDM and DLP Output Methods (DLP, FDM 3D 프린팅 출력 방식에 따른 치수 특성에 관한 연구)

  • Jung, Myung-Hwi;Kong, Jeong-Ri;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.66-73
    • /
    • 2021
  • In this paper, we analyzed and considered the precision of parts produced by 3D printing methods. For the latch systems applied to the Wingline folding doors, the 3D shape of the door hinge part was printed using FDM and DLP methods. Then, the 3D printed shape was scanned to measure the dimensions and dimensional changes of the actual model. In the comparison and analysis of the 3D printed door hinge parts, because the output filling density is 100% owing to the characteristics of DLP 3D printing, the filling density in FDM 3D printing was also set to 100%.

Evaluation of the accuracy of provisional restorative resins fabricated using dental 3D printers (치과용 3D 프린터로 제작된 임시 수복용 레진의 정확도 평가)

  • Kim, Min-su;Kim, Won-Gi;Kang, Wol
    • Journal of Korean society of Dental Hygiene
    • /
    • v.19 no.6
    • /
    • pp.1089-1097
    • /
    • 2019
  • Objectives: The purpose of this study is to assess the accuracy of provisional restorative resins fabricated using dental three-dimensional (3D) printers. Methods: Provisional restorative resins were fabricated using the first molar of the right mandibular. Three groups comprising a total of 24 samples of such resins were fabricated. The prepared abutment was scanned initially and then designed using a computer-aided design (CAD) software. The conventional subtractive manufacturing system was employed to fabricate the first group of resins, while the second and third groups were fabricated using a digital light processing (DLP) 3D printer and a stereolithography (SLA) 3D printer, respectively. The internal surfaces of the resins were scanned and 3D measurements of the resins were taken to confirm their accuracy. Results: The root-mean-square deviation (RMS±SD) of the accuracy of the resins fabricated using the conventional subtractive manufacturing system, DLP 3D printer, and SLA 3D printer were 68.83±2.22 ㎛, 74.63±6.23 ㎛, and 61.74±4.09 ㎛, respectively. A one-way analysis of variance (ANOVA) test showed significant differences between the three groups (p < 0.05). Conclusions: Provisional restorative resins fabricated using DLP and SLA 3D printers demonstrated clinically-acceptable results.

Observation of Castability of Dental DLP 3D Printer Materials (치과용 DLP 3D Printer 가공체의 주조성 관찰)

  • Song, Joon-boo;Park, Yu-jin;Choi, Sung-min
    • Journal of Technologic Dentistry
    • /
    • v.41 no.4
    • /
    • pp.255-262
    • /
    • 2019
  • Purpose: Recently, the production technology of dental prosthesis using 3D Printer workpeices has been developed. However, the lack of information on the work processes and casting techniques of materials for 3D printing casting is expected to require research. Therefore, in this study, we intend to cast a Dental DLP 3D Printer workpiece, which is being commercialized, to identify its appearance and internal clearance, and to observe its castability. Methods: Castability of the 3D Printer workpiece was evaluated. The specimen is prepared in a cylindrical shape and in a 1 mm thick coping shape. The control specimen is made of wax and the experimental specimen is made of resin using two types of 3D printers. After casting, the appearance of the casting body was observed and the internal clearance of the coping was measured. Results: RP1 and RP2, cylindrical specimens, were partially cast or fin. When coping-type specimens were measured before casting, the internal clearance of PE2 was more accurate than that of PC and PE1. When coping-type specimens were measured after casting, CE1 was the most accurate in occlusal clearance and CE2n was the most accurate in axial clearance. Conclusion: 1. Exterior observations of the casting body indicated casting defects and fins. 2. Internal clearance observations show that the occlusal clearance of the castings is larger after casting, and the axial clearance of the castings is smaller after casting. 3. It is judged that the RP2 specimen is more likely to be applied for casting than the RP1 specimen.

Correlation between UV-dose and Shrinkage amounts of Post-curing Process for Precise Fabrication of Dental Model using DLP 3D Printer (DLP 공정을 이용한 정밀 치아모델 제작에서 UV 조사량과 후경화 수축률의 상관관계 분석)

  • Shin, Dong-Hun;Park, Young-Min;Park, Sang-Hu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.47-53
    • /
    • 2018
  • Nowadays, additive manufacturing (AM) technology is a promising process to fabricate complex shaped devices applied in medical and dental services. Among the AM processes, a DLP (digital light processing) type 3D printing process has some advantages, such as high precision, relatively low cost, etc. In this work, we propose a simple method to fabricate precise dental models using a DLP 3D printer. After 3D printing, a part is commonly post-cured using secondary UV-curing equipment for complete polymerization. However, some shrinkage occurs during the post-curing process, so we adaptively control the UV-exposure time on each layer for over- or under-curing to change the local shape-size of a part in the DLP process. From the results, the shrinkage amounts in the post-curing process vary due to the UV-dose in 3D printing. We believe that the proposed method can be utilized to fabricate dental models precisely, even with a change of the 3D CAD model.

Observation of thermal properties of dental 3D printer materials (치과용 DLP 3D Printer 가공체의 열특성 관찰)

  • Song, Joon-Boo;Park, Yu-Jin;Choi, Sung-Min
    • Journal of Technologic Dentistry
    • /
    • v.43 no.3
    • /
    • pp.71-76
    • /
    • 2021
  • Purpose: In this study, thermal properties were observed by measuring the extent of thermal expansion and the amount of thermal residue that appears upon burnout on a workpiece made by using a dental digital light processing (DLP) three-dimensional (3D) printer. Methods: Thermal properties of workpieces manufactured by using two 3D printers were observed. The specimens were designed in cylindrical form with dimensions 10 mm in diameter and 10 mm in height. The control specimen was made of wax, and the experimental specimen was made of resin. The thermal expansion rate was measured by applying heat to three types of specimens, and burnout residue was measured. Results: The thermal expansion rate of the wax pattern (WP) specimen was 0.93%±0.05%, of the RP1 specimen was 1.30%±0.08%, and of the RP2 specimen was 1.20%±0.09%. Measuring the recovered residue yielded residual amounts of 0.2% for the WP specimen, 1.1% for the RP2 specimen, and 1.8% for the RP1 specimen. Conclusion: 1. From measurements of the workpieces manufactured by dental DLP 3D printing, the thermal expansion rate was found to be higher than that of wax. 2. As a result of measuring burnout residues on the workpieces manufactured by dental DLP 3D printing, the required summoning temperature to obtain suitable castings was determined to >750℃.

Support-generation Method Using the Morphological Image Processing for DLP 3D Printer (DLP 3D 프린터를 위한 형태학적 영상처리를 이용한 서포터 생성 방법)

  • Lee, Seung-Mok;Kim, Young-Hyung;Eem, Jae-Kwon
    • The Journal of Korean Institute of Information Technology
    • /
    • v.15 no.12
    • /
    • pp.165-171
    • /
    • 2017
  • This paper proposes a method of support-generation using morphological image processing instead of geometric calculations. The geometric computational cost is dependent on the shape, but our method is independent on the shape. For obtaining the external support area for extrusion shape, we represents morphological operations between two sliced layer images and shows results of each operation stages. Internal support area is evaluated from erosion and opening operations with the sliced-layer image. In these support areas, the supporter image is generated using the designed support structures. Also, we made a DLP printer and the STL model included supporter-structure is printed by the DLP printer. We confirmed the necessity of support-generation method with the support structures individually dependent on materials by looking at the printed results.