• Title/Summary/Keyword: DLC coating

Search Result 143, Processing Time 0.035 seconds

Tribological Behaviors of DLC Thin Films Deposited using Precursor Gas diluted by Hydrogen under Aqueous Environment (수중 환경에서 수소로 희석된 반응 가스를 이용하여 증착된 DLC 박막의 트라이볼로지 거동)

  • Lee, Jin-U;Mun, Myeong-Un;Lee, Gwang-Ryeol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.338-339
    • /
    • 2012
  • This study examined the friction and wear behavior of diamond-like carbon (DLC) films deposited from a radio frequency glow discharge using a hydrogen diluted benzene gas mixture. The DLC films were deposited on Si (100) and polished stainless steel substrates by r.f.-PACVD at hydrogen to benzene ratios, or the hydrogen dilution ratio, ranging from 0 to 2.0. The wear test was carried out in both ambient and aqueous environments using a home-made ball-on-disk type wear rig. The stability of the DLC coating in an aqueous environment was improved by diluting the benzene precursor gas with hydrogen, suggesting that hydrogen dilution during the deposition of DLC films suppress the initiation of defects in the film and improved the adhesion of the coating to the interface.

  • PDF

The Effects of Surface Porfiles and Coatings on the Tribological Behaviors of the Surfaces of Piston Skirt (피스톤 스커트 표면의 트라이볼로지 거동에 미치는 표면형상과 코팅의 영향)

  • Cho, Dae-Hyun;Chung, Soon-Oh;Won, Young-Duck;Han, Man-Cheol;Lee, Young-Ze
    • Tribology and Lubricants
    • /
    • v.24 no.3
    • /
    • pp.122-128
    • /
    • 2008
  • To reduce the friction losses and the wear amounts in the piston assembly two methods were proposed. One is the modification of surface profile of the skirt part. The surface coating is another method to protect the sliding surfaces. To modify the profile of the skirt surfaces the surfaces were ground to have three different shapes of profiles. Also, several coatings, such as graphite, TiN, and $MoS_2$, and DLC, were used to protect the surfaces of the piston skirts. The specimens of the skirt and the cylinder bores were tested with the reciprocating wear tester. SAE 5W40 engine oil was used in boundary lubrication regime. Among several coatings the graphite and DLC coatings were very effective to reduce the friction forces. Especially, DLC film represented much better tribological performances than the others. The friction coefficient of the graphite coating was the lowest, but the graphite coating was not effective to protect the surfaces.

High functional surface treatments for rapid heating of plastic injection mold (급속가열용 플라스틱 사출금형을 위한 고기능성 표면처리)

  • Park, Hyun-Jun;Cho, Kyun-Taek;Moon, Kyoung-Il;Kim, Tae-Bum;Kim, Sang-Sub
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.7-12
    • /
    • 2021
  • Plastic injection molds used for rapid heating and cooling must minimize surface damage due to friction and maintain excellent thermal and low electrical conductivity. Accordingly, various surface treatments are being applied. The properties of Al2O3 coating and DLC coating were compared to find the optimal surface treatment method. Al2O3 coating was deposited by thermal spray method. DLC films were deposited by sputtering process in room temperature and high temperature PECVD (Plasma enhanced chemical vapor deposition) process in 723 K temperature. For the evaluation of physical properties, the electrical and thermal conductivity including surface hardness, adhesion and wear resistance were analyzed. The electrical resistance of the all coated samples was showed insulation properties of 24 MΩ/sq or more. Especially, the friction coefficient of high temp. DLC coating was the lowest at 0.134.

Friction and Wear Characteristics of Magneto-rheological Fluid Depend on Surface Coated by DLC and PTFE (DLC와 PTFE표면코팅에 따른 자기유변유체의 마찰 마모 특성)

  • Zhang, Peng;Lee, Kwang-Hee;Lee, Chul-Hee;Choi, JongMyong
    • Tribology and Lubricants
    • /
    • v.31 no.2
    • /
    • pp.62-68
    • /
    • 2015
  • A magnetorheological (MR) fluid is a smart material whose rheological behavior can be controlled by varying the parameters of the applied magnetic field. Because the damping force and shear force of an MR fluid can be controlled using a magnetic field, it is widely employed in many industrial applications, such as in vehicle vibration control, powertrains, high-precision grinding processes, valves, and seals. However, the characteristics of friction caused by iron particles inside the MR fluid need to be understood and improved so that it can be used in practical applications. Surface process technologies such as polytetrafluoroethylene (PTFE) coatings and diamond-like carbon (DLC) coatings are widely used to improve the surface friction properties. This study examines the friction characteristics of an MR fluid with different surface process technologies such as PTFE coatings and DLC coatings, by using a reciprocating friction tester. The coefficients of friction are in the following descending order: MR fluid without any coating, MR fluid with a DLC coating, and MR fluid with a PTFE coating. Scanning electron microscopy is used to observe the worn surfaces before and after the experiment. In addition, energy dispersive X-ray spectroscopy is used to analyze the chemical composition of the worn surface. Through a comparison of the results, the friction characteristics of the MR fluid based on the different coating technologies are analyzed.

Mechanical Properties of TiN and DLC coated Rod for Pedicle Screw System (TiN 및 DLC 코팅된 척추용 나사못 시스템 Rod의 기계적 특성 분석)

  • Kang, Kwan-Su;Jung, Tae-Gon;Yang, Jae-Woong;Woo, Su-Heon;Park, Tea-Hyun;Jeong, Yong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.3
    • /
    • pp.183-191
    • /
    • 2017
  • In this study, surface morphology and mechanical property of TiN and DLC coated pedicle screw have been investigated by field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, vickers hardness test, axial gripping, and axial torsional gripping capacity test. From the EDS and XRD results, the composition and crystal structure of TiN and DLC coated surface were verified. The hardness value was increased by TIN and DLC coating, and the DLC coating surface has the highest value. The gripping capacity also showed higher value for TiN and DLC coated specimen than that of non-coated (Ti alloy) surface. The surface morphology of gripping tested specimen showed rougher scratched surface from Ti alloy than TiN and DLC coated layer.

A Study on the DLC Film Coating for Improving Loosening Torque of Dental Implant Screw (치과 임플란트 스크루 풀림토크 개선용 DLC 박막 코팅에 관한 연구)

  • Jeong, Woon-Jo;Cho, Jae-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1375-1381
    • /
    • 2018
  • In this paper, we studied coatings of the DLC thin film for improving loosening torque of dental implant screw. We used a filtered arc ion plating process which can realize the most dense DLC layer by coating the DLC thin film on the surface of the dental abutment screw. It showed both hardness comparable to diamond and low friction coefficient similar to graphite, and to improve the loosening phenomenon by increasing the screw tightening force Cr/CrN, Ti/TiN or Ti/TiN/Cr/CrN buffer layers were deposited for 5 to 10 minutes to improve the adhesion of the DLC thin film to the surface of the Ti (Gr.5), and then the DLC thin film was coated for about 15 minutes. As a result, the Cr/CrN buffer layer exhibited the highest hardness of 29.7 GPa, the adhesion of 18.62N on average, and a very low coefficient of friction of less than 0.2 as a whole. And we measured loosening torque after one million times with masticatory movement simulator. As a result, the values of the coated screw loosening torque were clearly higher than those of the uncoated screw. From this, it was found that the DLC coating was effective methods improving the loosening torque. In addition, it was confirmed that the cytotoxicity test and cell adhesion test showed high biocompatibility.

CHARACTERISTICS OF DIAMONDLIKE CARBON COATED ALUMINA SEALS AT TEMPERATURES UP TO $400^{\circ}C$ (플라즈마 증착방식에 의해 DLC코팅된 알루미나 세라믹의 코팅박막 특성에 관한 연구)

  • Ok, Chul-Ho;Kim, Byoung-Yong;Kang, Dong-Hun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.397-397
    • /
    • 2007
  • Diamondlike carbon (DLC) coatings were deposited on alumina ceramic seals using a plasma immersion ion deposition technique (PIID). Then they were subjected to tribological tests using a pin-on-disc tribometer under a high load (1.3 GPa) and under elevated temperatures up to 400C. Coefficients of friction (COFs) were recorded and compared with that of the untreated alumina while the wear tracks were analyzed using SEM with EDS to characterize the DLC films. To enhance the DLC adhesion to the substrate, various interlayers including Si and Cr were deposited using the PIID process or an ion beam assisted deposition (IBAD) method. It was observed that the DLC coating, if adhering well to the substrate, reduced the COFs significantly, from 0.4-0.8 for the uncoated alumina to about 0.05-0.1, within the tested temperature range. The adhesion was determined by the interlayer type and possibly by the application method. Cr interlayer did not perform as well as the Si interlayer. This could also be due to the fact that the Cr interlayer and the subsequent DLC coating had to be done in two different processing systems, while both the Si interlayer and the subsequent DLC film were deposited in one system without breaking the chamber. The coating failure mode was found to be delamination between the Cr and the alumina substrate. In contrast, the Si interlayer with proper DLC deposition procedures resulted in very good adhesion and hence excellent tribological performance. Further study may lead to future DLC applications of ceramic seals.

  • PDF

Thermal Stability of Silicon-containing Diamond-like Carbon Film (실리콘 함유 DLC 박막의 내열특성)

  • Kim, Sang-Gweon;Kim, Sung-Wan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.2
    • /
    • pp.83-89
    • /
    • 2010
  • Diamond-like carbon (DLC) coating was studied to be a good tribological problem-solver due to its low friction characteristics and high hardness. However, generally hydrogenated DLC film has shown a weak thermal stability above $300^{\circ}C$. However, the silicon doping DLC process by DC pulse plasma enhanced chemical vapor deposition (PECVD) for the new DLC coating which has a good characterization with thermal stability at high temperature itself has been observed. And we were discussed a process for optimizing silicon content to promote a good thermal stability using various tetramethylsilane (TMS) and methane gas at high-temperature. The chemical compositions of silicon-containing DLC film was analyzed using X-ray photoelectron spectroscopy (XPS) before and after heat treatment. Raman spectrum analysis showed the changed structure on the surface after the high-temperature exposure testing. In particular, the hardness of silicon-containing DLC film showed different values before and after the annealing treatment.

Tribological properties of ultra-thin diamond-like carbon coating at various humidity

  • Cuong, Pham Duc;Ahn, Hyo-Sok;Kim, Choong-Hyun;Kim, Doo-In
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.161-162
    • /
    • 2002
  • This study concerns the tribological behaviors of ultra-thin DLC coating with 3 nm thickness deposited in a mixed gas of argon + 20 % hydrogen as a function of humidity. Reciprocating wear tests employing a micro wear tester were performed under various normal loads and relative humidity in air environment. The chemical composition of the original and worn surfaces were studied by Auger electron spectroscopy (AES). It showed that the ultra-thin DLC coating exhibited low friction with enough wear stability at low normal load (0.18 N) and its tribological behavior was strongly dependent on the humidity. The sample surfaces before and after the test were examined using atomic force microscopy (AFM). Capillary force and meniscus areas were discussed in order to explain the influence of humidity on the friction force.

  • PDF