• Title/Summary/Keyword: DISI

Search Result 37, Processing Time 0.028 seconds

Study on the Spray Behavior from Swirl and Fan Spray Type Gasoline Injectors Impinging on the Constant Temperature Flat Plate (스월형 및 팬스프레이형 고압직분식 가솔린 분사기의 상온 평판에서의 분무 충돌 특성에 관한 연구)

  • Kim, Chong-Min;Kang, Shin-Jae;Kim, Man-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.100-106
    • /
    • 2006
  • The behavior of spray impinging on the inclined constant temperature flat plate was experimentally investigated. To clarify the wall effect of a high pressure DISI injector, a relative angle of the inclined wall to a spray axis was varied. Spray penetration along the wall was observed optically and it was compared with that of a Fan spray type and Swirl type spray. To evaluate various spray motion quantitatively, a spray path penetration which describe the development of a spray tip along the wall was newly introduced. To observe the structure of an impinging spray, it was visualized by a controlled stroboscope light and its visualized image was captured on an CCD camera. Using the digital image of impinging spray $H_x$ and $R_x$ was extracted to clarify the structure of impinging spray. The main parameter of the relative position of the wall was the inclined angle which was defined as the angle was varied from $0^{\circ}$ (vertical impingement) to $60^{\circ}$ at the same condition.

Wireless sensor networks for permanent health monitoring of historic buildings

  • Zonta, Daniele;Wu, Huayong;Pozzi, Matteo;Zanon, Paolo;Ceriotti, Matteo;Mottola, Luca;Picco, Gian Pietro;Murphy, Amy L.;Guna, Stefan;Corra, Michele
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.595-618
    • /
    • 2010
  • This paper describes the application of a wireless sensor network to a 31 meter-tall medieval tower located in the city of Trento, Italy. The effort is motivated by preservation of the integrity of a set of frescoes decorating the room on the second floor, representing one of most important International Gothic artworks in Europe. The specific application demanded development of customized hardware and software. The wireless module selected as the core platform allows reliable wireless communication at low cost with a long service life. Sensors include accelerometers, deformation gauges, and thermometers. A multi-hop data collection protocol was applied in the software to improve the system's flexibility and scalability. The system has been operating since September 2008, and in recent months the data loss ratio was estimated as less than 0.01%. The data acquired so far are in agreement with the prediction resulting a priori from the 3-dimensional FEM. Based on these data a Bayesian updating procedure is employed to real-time estimate the probability of abnormal condition states. This first period of operation demonstrated the stability and reliability of the system, and its ability to recognize any possible occurrence of abnormal conditions that could jeopardize the integrity of the frescos.

The Early-Stage Changes of Water Qualities after the Saemangeum Sea-dike Construction (새만금 방조제 체절 이후 초기의 수질변화에 관한 연구)

  • Yang, Jae-Sam;Jeong, Yong-Hoon;Ji, Kwang-Hee;Kim, Hyun-Soo;Choi, Joeng-Hoon;Kim, Won-Jang
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.4
    • /
    • pp.199-213
    • /
    • 2008
  • Saemangeum salt-water Lake has been created by the completion of the sea-dike in April 2006. To monitor the water qualities of the lake during the sea-dike construction, salinity, SS, nutrients(DIN, DIP, DISi), and chlorophyll-$\alpha$ was analyzed for the surface water from 1999 to 2007. Due to the dike construction, weaker tidal current and lesser resuspension of bottom sediment resulted in the marked decrease of the concentrations of SS in the lake water. Consequently the clearer lake water has provided better condition for primary production with deeper penetration of sunlight into the water column and sufficient nutrient content in the water. Finally the chlorophyll-$\alpha$ content became approximately double in the concentration after the dike construction. Highly stimulated algal production with the marked decrease of the concentrations of SS was decreased the concentration of DIP in the surface water. On the other hand the concentration of DIN and DISi in surface water was increased after dike construction due to the expansion of the freshwater and the supply from bottom layer. As a result, the lake revealed an extremely high NIP ratio and a DIP-limited ecosystem. The lake has been transformed from a typical coastal ecosystem to a brackish one. Since the dike completion, the lake has shown a similar change pattern to the Geum River estuary. Due to the salt-wedge intrusion of seawater, it is highly probable to expect the formation of low-oxygen zone at the bottom layer near the river-mouth area of the lake during the summer. Therefore we need a continuous sentinel monitoring of bottom water qualities in the near future.

  • PDF

Experimental Study on Spray Structure of a High Pressure 6-Hole Injector by Mie Scattering Technique (미산란 기법에 의한 고압 6공 연료분사기의 분무형상에 대한 실험적 연구)

  • Kim, Seong-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.11
    • /
    • pp.878-883
    • /
    • 2008
  • The spray characteristics of a high pressure 6-hole injector were examined in a single cylinder optical direct injection spark ignition (DISI) engine. The effects of injection timing, in-cylinder charge motion, fuel injection pressure and coolant temperature were investigated using the 2-dimensional Mie scattering technique. It was confirmed that the in-cylinder charge motion played a major role in the fuel spray distribution during the induction stroke while the propagation of fuel spray was restrained during the compression stroke by the increasing pressure and the upward moving piston. In additions, it was confirmed that the liquid fuel droplets existing at the sprays edges were vaporized by the increase of the coolant temperature.

The Droplet Size Distribution of Fan Spray at Different Surrounding Conditions (팬형분무의 주변조건에 따른 입자분포 변화)

  • Moon, Seok-Su;Choi, Jae-Joon;Bae, Choong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.7 s.262
    • /
    • pp.611-619
    • /
    • 2007
  • In this study, the droplet size distribution of a slit injector at different surrounding conditions, such as air flow and fuel temperature, were investigated. Phase Doppler anemometry (PDA) was utilized to investigate the initial droplet size distribution and the effect of fuel temperature and air flow on droplet size distribution. The entrained air motion was also evaluated by the temporal velocity profile of droplets. When the air flow velocity increased, the small droplets were more entrained to the upper and central parts of the spray and this tendency was confirmed by plotting the temporal velocity profile of droplets. This entrainment of small droplets at high airflow velocities caused relatively small mean droplet size at upper and central parts of the spray and the large mean droplet size at downstream and edge of the spray, compared to that of low airflow velocities. The total mean droplet size, obtained by averaging the size of all droplets measured at all test locations, decreased when the high airflow velocities were applied. The increased fuel temperature, with an airflow velocity of 10m/s, caused reduced droplet size at all test locations. However, the decreased value of mean droplet size at high fuel temperatures was relatively higher at upper parts of the spray, compared to downstream, as a result of enhanced entrainment of small droplets to upper parts of the spray.

A Downlink Load Control Scheme with a Dynamic Load Threshold and Virtual Coverage Management for Two-Tier Femtocell Networks

  • Kang, Chang Soon;Nguyen, Tien Dung;Kim, Junsu;Cigno, Renato Lo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2597-2615
    • /
    • 2013
  • This paper proposes a dynamic downlink load control scheme that jointly employs dynamic load threshold management and virtual coverage management schemes to reduce the degree of performance degradation due to traffic overload in two-tier femtocell networks. With the proposed scheme, the downlink load in a serving macrocell is controlled with a load threshold which is adjusted dynamically depending on the varying downlink load conditions of neighboring macrocells. In addition, traffic overloading is alleviated by virtually adjusting the coverage of the overloaded serving macrocell, based on the adjusted load threshold of the serving macrocell. Simulation results show that the proposed scheme improves the performance of two-tier femtocell networks in terms of the outage probability and sum throughput. This improvement is significantly increased with appropriate values of load thresholds and with an intermediate-level adjustment of the virtual coverage area (i.e., handover hysteresis margin: HOM). Furthermore, the proposed scheme outperforms both a previously proposed load control scheme with a static load threshold and the LTE system without a HOM adjustment.

Effects of Injection Pressures on Combustion and Emissions in a Direct Injection LPG Spark Ignition Engine (적접분사식 LPG엔진에서 연료분사압력이 연소/배기특성에 미치는 영향 연구)

  • Lee, Seok-Whan;Cho, Jun-Ho;Oh, Seung-Mook
    • Journal of ILASS-Korea
    • /
    • v.16 no.1
    • /
    • pp.7-14
    • /
    • 2011
  • High pressure LPG fuel spray with a conventional swirl injector was visualized and the impact of the injection pressure was also investigated using a DISI (direct injection spark ignition) LPG single cylinder engine. Engine performance and emission characteristics were evaluated over three different injection pressure and engine loads at an engine speed of 1500 rpm. The fuel spray pattern appeared to notably have longer penetration length and narrower spray angle than those of gasoline due to its lower angular momentum and rapid vaporization. Fuel injection pressure did not affect combustion behaviors but for high injection pressure and low load condition ($P_{inj}$=120 bar and 2 bar IMEP), which was expected weak flow field configuration and low pressure inside the cylinder. In terms of nano particle formation the positions of peak values in particle size distributions were not also changed regardless of the injection pressure, and its number densities were dramatically reduced compared to those of gasoline.

The Gasoline Atomization Characteristics and Static Pressure Distribution of Tapered Nozzle Swirl Spray (경사노즐 선회분사기의 가솔린 미립화 및 분무 내부 압력 분포)

  • Moon, Seok-Su;Choi, Jae-Joon;Bae, Choong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.3 s.258
    • /
    • pp.283-291
    • /
    • 2007
  • The static pressure distribution, atomization characteristics and velocity distribution of tapered nozzle swirl spray is analyzed and then compared with original swirl spray. The static pressure distribution inside the swirl spray is measured using a piezoresistive pressure transducer. Phase Doppler anemometry (PDA) is applied to measure and analyze the droplet size and velocity distribution of tapered nozzle and original swirl spray. The static pressure inside the spray shows the lower value compared to the atmospheric pressure and this pressure drop is getting attenuated as the taper angle is increased. The droplet size of tapered nozzle spray shows similar value compared to the original swirl spray at the horizontal mainstream while it shows increased value at vertical mainstream. The deteriorated atomization characteristics of tapered nozzle spray is improved by applying high fuel temperature injection without causing the spray collapse. The velocity results show that the larger portion of fuel is positioned with higher injection velocity, and the smaller portion of fuel is positioned with lower injection velocity with causing spatially non-uniform mixture distribution.

An Experimental Study on the Flow Characteristics and the Stratification Effects in Visualization Engine Using the DPIV and the Entropy Analysis (DPIV와 엔트로피 해석방법을 이용한 가시화 엔진내의 유동 특성 및 성층효과에 관한 실험적 연구)

  • Lee Changhee;Lee Kihyung;Lee Changsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.9-18
    • /
    • 2005
  • The objective of this study is to analyse the spray characteristics according to the injection duration under the ambient pressure condition, and the injection timing in the visualization engine. In order to investigate the spray behavior, we obtained the spray velocity using the PIV method that has been an useful optical diagnostics technology, and calculated the vorticity from spray velocity component. These results elucidated the relationship between vorticity and entropy which play an important role in the diffusion process for the early injection case and the stratification process for the late injection case. In addition, we quantified the homogeneous diffusion rate of spray using the entropy analysis based on the Boltzmann's statistical thermodynamics. Using these method, it was found that the concentration of spray droplets caused by the increase of injection duration is more effective than the increase of momentum dissipation. We also found that the homogeneous diffusion rate increased as the injection timing moved to the early intake stroke process and BTDC $50^{\circ}$ was the most efficient injection timing for the stratified mixture formation during the compression stroke.

EXPERIMENTAL STUDY ON THE FLOW AND MIXTURE DISTIBUTION IN A VISUALIZATION ENGINE USING DIGITAL PARTICLE IMAGE VELOCIMETRY AND ENTROPY ANALYSIS

  • Lee, K.H.;Lee, C.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.127-135
    • /
    • 2007
  • The objective of this study is to analyze the effect of velocity and vorticity on stratified mixture formation in the visualization engine. In order to investigate spray behavior, the pray velocity is obtained through the cross-correlation PIV method, a useful optical diagnostics technology and the vorticity calculated from the spray velocity component. These results elucidated the relationship between vorticity and entropy, which play an important role in the diffusion process for the early injection case and the stratification process for the late injection case. In addition, we quantified the homogeneous diffusion ate of spray using entropy analysis based on Boltzmann's statistical thermodynamics. Using these methods, we discovered that the homogeneous mixture distribution is more effective as a momentum dissipation of surrounding air than that of the spray concentration with a change in the injection timing. We found that the homogenous diffusion rate increased as the injection timing moved to the early intake stroke process, and BTDC $60^{\circ}$ was the most efficient injection timing for the stratified mixture formation during the compression stroke.