• Title/Summary/Keyword: DI model

Search Result 402, Processing Time 0.025 seconds

On the use of spectral algorithms for the prediction of short-lived volatile fission product release: Methodology for bounding numerical error

  • Zullo, G.;Pizzocri, D.;Luzzi, L.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1195-1205
    • /
    • 2022
  • Recent developments on spectral diffusion algorithms, i.e., algorithms which exploit the projection of the solution on the eigenfunctions of the Laplacian operator, demonstrated their effective applicability in fast transient conditions. Nevertheless, the numerical error introduced by these algorithms, together with the uncertainties associated with model parameters, may impact the reliability of the predictions on short-lived volatile fission product release from nuclear fuel. In this work, we provide an upper bound on the numerical error introduced by the presented spectral diffusion algorithm, in both constant and time-varying conditions, depending on the number of modes and on the time discretization. The definition of this upper bound allows introducing a methodology to a priori bound the numerical error on short-lived volatile fission product retention.

The random structural response due to a turbulent boundary layer excitation

  • De Rosa, S.;Franco, F.;Romano, G.;Scaramuzzino, F.
    • Wind and Structures
    • /
    • v.6 no.6
    • /
    • pp.437-450
    • /
    • 2003
  • In this paper, the structural random response due to the turbulent boundary layer excitation is investigated. Using the mode shapes and natural frequencies of an undamped structural operator, a fully analytical model has been assembled. The auto and cross-spectral densities of kinematic quantities are so determined through exact analytical expansions. In order to reduce the computational costs associated with the needed number of modes, it has been tested an innovative methodology based on a scaling procedure. In fact, by using a reduced spatial domain and defining accordingly an augmented artificial damping, it is possible to get the same energy response with reduced computational costs. The item to be checked was the power spectral density of the displacement response for a flexural simply supported beam; the very simple structure was selected just to highlight the main characteristics of the technique. In principle, it can be applied successfully to any quantity derived from the modal operators. The criterion and the rule of scaling the domain are also presented, investigated and discussed. The obtained results are encouraging and they allow thinking successfully to the definition of procedure that could represent a bridge between modal and energy methods.

ASSESSMENT OF STABILITY MAPS FOR HEATED CHANNELS WITH SUPERCRITICAL FLUIDS VERSUS THE PREDICTIONS OF A SYSTEM CODE

  • Ambrosini, Walter;Sharabi, Medhat Beshir
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.627-636
    • /
    • 2007
  • The present work is aimed at further discussing the effectiveness of dimensionless parameters recently proposed for the analysis of flow stability in heated channels with supercritical fluids. In this purpose, after presenting the main motivations for the introduction of these parameters in place of previously proposed ones, additional information on the theoretical bases and on the consequences of this development is provided. Stability maps, generated by an in-house program adapted from a previous application to boiling channels, are also shown for different combinations of the operating parameters. The maps are obtained as contour plots of an amplification parameter obtained from numerical discretization and subsequent linearization of governing equations; as such, they provide a quantitatively clear perspective of the effect of different boundary conditions on the stability of heated channels with supercritical fluids. In order to assess the validity of the assumptions at the basis of the in-house model, supporting calculations have been performed making use of the RELAP5/MOD3.3 computer code, detecting the values of the dimensionless parameters at the threshold for the occurrence of instability for a heated channel representative of SCWR proposed core configurations. The obtained results show reasonable agreement with the maps, supporting the applicability of the proposed scaling parameters for describing the dynamic behaviour of heated channels with supercritical fluids.

Closed-form optimum tuning formulas for passive Tuned Mass Dampers under benchmark excitations

  • Salvi, Jonathan;Rizzi, Egidio
    • Smart Structures and Systems
    • /
    • v.17 no.2
    • /
    • pp.231-256
    • /
    • 2016
  • This study concerns the derivation of optimum tuning formulas for a passive Tuned Mass Damper (TMD) device, for the case of benchmark ideal excitations acting on a single-degree-of-freedom (SDOF) damped primary structure. The free TMD parameters are tuned first through a non-linear gradient-based optimisation algorithm, for the case of harmonic or white noise excitations, acting either as force on the SDOF primary structure or as base acceleration. The achieved optimum TMD parameters are successively interpolated according to appropriate analytical fitting proposals, by non-linear least squares, in order to produce simple and effective TMD tuning formulas. In particular, two fitting models are presented. The main proposal is composed of a simple polynomial relationship, refined within the fitting process, and constitutes the optimum choice. A second model refers to proper modifications of literature formulas for the case of an undamped primary structure. The results in terms of final (interpolated) optimum TMD parameters and of device effectiveness in reducing the structural dynamic response are finally displayed and discussed in detail, showing the wide and ready-to-use validity of the proposed optimisation procedure and achieved tuning formulas. Several post-tuning trials have been carried out as well on SDOF and MDOF shear-type frame buildings, by confirming the effective benefit provided by the proposed optimum TMD.

Conformational Analysis of Catecholamines-Raman, High Resolution NMR, and Conformational Energy Calculation Study

  • Park Mi-Kyung;Yoo Hee-Soo;Kang Young Kee;Lee Nam-Soo;Ichiro Hanazaki
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.3
    • /
    • pp.230-235
    • /
    • 1992
  • The conformational analysis has been done for catecholamines (dopamine, norepinephrine, and epinephrine) in the cationic and di-anionic states. The species responsible for adsorption on silver metal surface is anionic deprotonated at hydroxyl groups of catechol moiety, i.e., di-anionic states of catecholamines. This was deduced from Fourier-transform Raman spectra of sodium salts of catecholamines. High resolution proton NMR (400 MHz) spectra of catecholamines in basic and neutral $D_2O$ solution show that the conformations of norepinephrine and epinephrine in the di-anionic states are preferred in gauche, but not for dopamine in the di-anionic state. However the energy difference between trans and gauche of catecholamines in the protonated cationic states is small enough to rotate freely through C-C bond in ethylamine moiety. The conformational calculations using an empirical potential function and the hydration shell model (a program CONBIO) show consistent with above experimental results. The calculations suggest that the species of catecholamines adsorbed on silver metal surface would be in favor of the gauche conformations.

Development of River Flow Analysis Model for Tracking Hazardous Chemical Substances Released From Accident Spill (사고 유출 유해화학물질 추적을 위한 하천 흐름해석 모형 개발)

  • Eum, Tae Soo;An, Se Hyuck;Song, Chang Geun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.248-248
    • /
    • 2021
  • 본 연구에서 개발한 하천흐름해석모형 HDM-2Di는 2차원 추적모형에 필요한 격자생성기(RAMS-G) 및 GUI (RAMS+)와 연계하여 요소망 생성기능 및 요소망 처리기능을 통해 실제 지형을 반영할 수 있는 전처리 과정을 수행할 수 있다. 장구간 하천에서 신속하고 정확하게 모의결과를 도출할 수 있도록 입출력 체계를 구조화하다. 또한 하천의 복잡한 지형과 자연 하천구조의 동역학적인 흐름환경을 효과적으로 재현할 수 있으며 흐름해석모의 결과인 2차원 평면상의 유속과 수심을 2차원 유해화학물질 추적모형(CTM-2D-TX)의 입력자료로 활용할 수 있도록 개발하였다. HDM-2Di 모형의 성능 검증을 위하여 정상류 및 준부정류, 부정류 조건 흐름해석 성능 테스트를 진행하였으며, 실제 자연하천의 물리적 구조를 재현한 사행수로 추적자 실험 결과와 모형 결과를 비교분석하였다. 또한 자연하천 적용을 위하여 구미보와 칠곡보 구간을 대상으로 ADCP 실측 결과와 상용모형인 Nays-2DH 모의 결과와의 비교를 통해 HDM-2Di 흐름해석모형의 정확성 및 적용성을 평가하였다.

  • PDF

Analytical model for high-strength concrete columns with square cross-section

  • Campione, G.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.3
    • /
    • pp.295-316
    • /
    • 2008
  • In the present paper a mechanical model to predict the compressive response of high strength short concrete columns with square cross-section confined by transverse steel is presented. The model allows one to estimate the equivalent confinement pressures exercised by transverse steel during the loading process taking into account of the interaction of the stirrups with the inner core both in the plane of the stirrups and in the space between two successive stirrups. The lateral pressure distributions at hoop levels are obtained by using a simple model of elastic beam on elastic medium simulating the interaction between stirrups and concrete core, including yielding of steel stirrups and damage of concrete core by means of the variation in the elastic modulus and in the Poisson's coefficient. Complete stress-strain curves in compression of confined concrete core are obtained considering the variation of the axial forces in the leg of the stirrup during the loading process. The model was compared with some others presented in the literature and it was validated on the basis of the existing experimental data. Finally, it was shown that the model allows one to include the main parameters governing the confinement problems of high strength concrete members such as: - the strength of plain concrete and its brittleness; - the diameter, the pitch and the yielding stress of the stirrups; - the diameter and the yielding stress of longitudinal bars; - the side of the member, etc.

Simulation of Soil Hydrological Components in Chuncheon over 30 years Using E-DiGOR Model

  • Aydin, Mehmet;Jung, Yeong-Sang;Yang, Jae-E.;Lee, Hyun-Il;Kim, Kyung-Dae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.484-491
    • /
    • 2012
  • The hydrological components of a sandy loam soil of nearly level in Chuncheon over 30 years were computed using the E-DiGOR model. Daily simulations were carried out for each year during the period of 1980 to 2009 using standard climate data. Reference evapotranspiration and potential soil evaporation based on Penman-Montheith model were higher during May to August because of the higher atmospheric evaporative demand. Actual soil evaporation was mainly found to be a function of the amount and timing of rainfall, and presumably soil wetness in addition to atmospheric demand. Drainage was affected by rainfall and increased with a higher amount of precipitation and soil water content. Excess drainage occurred throughout rainy months (from July to September), with a peak in July. Therefore, leaching may be a serious problem in the soils all through these months. The 30-year average annual reference evapotranspiration and potential soil evaporation were 951.5 mm and 714.2 mm, respectively. The actual evaporation from bare soil varied between 396.9-528.4 mm and showed comparatively lesser inter-annual variations than drainage. Annual drainage rates below 120 cm soil depth ranged from 477.8 to 1565.9 mm. The long-term mean annual drainage-loss was approximately two times higher than actual soil evaporation.

Korean Red Ginseng attenuates Di-(2-ethylhexyl) phthalate-induced inflammatory response in endometrial cancer cells and an endometriosis mouse model

  • Song, Heewon;Won, Ji Eun;Lee, Jeonggeun;Han, Hee Dong;Lee, YoungJoo
    • Journal of Ginseng Research
    • /
    • v.46 no.4
    • /
    • pp.592-600
    • /
    • 2022
  • Background: Di-(2-ethylhexyl) phthalate (DEHP) is the most common endocrine disrupting chemical used as a plasticizer. DEHP is associated with the development of endometrium-related diseases through the induction of inflammation. The major therapeutic approaches against endometrial cancer and endometriosis involve the suppression of inflammatory response. Korean Red Ginseng (KRG) is a natural product with anti-inflammatory and anti-carcinogenic properties. Thus, the purpose of this study is to investigate the effects of KRG on DEHP-induced inflammatory response in endometrial cancer Ishikawa cells and a mouse model of endometriosis. Methods: RNA-sequencing was performed and analyzed on DEHP-treated Ishikawa cells in the presence and absence of KRG. The effects of KRG on DEHP-induced cyclooxygenase-2 (COX-2) mRNA levels in Ishikawa cells were determined by RT-qPCR. Furthermore, the effects of KRG on the extracellular signal-regulated kinases (ERKs) pathway, COX-2, and nuclear factor-kappa B (NF-kB) p65 after DEHP treatment of Ishikawa cells were evaluated by western blotting. In the mouse model, the severity of endometriosis induced by DEHP and changes in immunohistochemistry were used to assess the protective effect of KRG. Results: According to the RNA-sequencing data, DEHP-induced inflammatory response-related gene expression was downregulated by KRG. Moreover, KRG significantly inhibited DEHP-induced ERK1/2/NF-κB/COX-2 levels in Ishikawa cells. In the mouse model, KRG administration significantly inhibited ectopic endometriosis growth after DEHP-induced endometriosis. Conclusions: Overall, these results suggest that KRG may be a promising lead for the treatment of endometrial cancer and endometriosis via suppression of the inflammatory response.

Cylindrical bending of laminated cylindrical shells using a modified zig-zag theory

  • Icardi, Ugo
    • Structural Engineering and Mechanics
    • /
    • v.6 no.5
    • /
    • pp.497-516
    • /
    • 1998
  • A relatively simple two-dimensional multilayered shell model is presented for predicting both global quantities and stress distributions across the thickness of multilayered thick shells, that is based on a third-order zig-zag approach. As for any zig-zag model, the layerwise kinematics is accounted for, with the stress continuity conditions at interfaces met a priori. Moreover, the shell model satisfies the zero transverse shear stress conditions at the upper and lower free surfaces of the shell, irrespective of the lay-up. By changing the parameters in the displacement model, some higher order shell models are obtained as particular cases. Although it potentially has a wide range of validity, application is limited to cylindrical shell panels in cylindrical bending, a lot of solutions of two-dimensional models based on rather different simplyfying assumptions and the exact three-dimensional elasticity solution being available for comparisons for this benchmark problem. The numerical investigation performed by the present shell model and by the shell models derived from it illustrates the effects of transverse shear modeling and the range of applicability of the simplyfying assumptions introduced. The implications of retaining only selected terms depending on the radius-to-thickness ratio are focused by comparing the present solutions to the exact one and to other two-dimensional solutions in literature based on rather different simplyfying assumptions.