• Title/Summary/Keyword: DI engine

Search Result 211, Processing Time 0.021 seconds

A Study on the Flow Characteristics and Engine Performance with Swirl Ratio Variance of Intake Port (흡기포트 선회비 변경에 따른 유동특성 및 엔진성능에 관한 연구)

  • Yoon, Jun-Kyu;Cha, Kyung-Ok
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.899-905
    • /
    • 2000
  • The characteristics of air flow and engine performance with swirl ratio variance of intake port In a turbocharged DI diesel engine was studied in this paper. The intake port flow is important factor which have influence on the engine performance and exhaust emission because the properties in the injected fuel depend on the combustion characteristics. The swirl ratio for ports was modified by hand-working and measured by impulse swirl meter. For the effects on performance and emission, the brake torque and brake specific fuel consumption were measured by engine dynamometer and NOx, smoke were measured by gas analyzer and smoke meter. As a result of steady flow test, when the valve eccentricity ratio are closed to cylinder wall, the flow coefficient and swirl intensity are increased. And as the swirl ratio is increased, the mean flow coefficient is decreasing, whereas the gulf factor is increasing. Also, through engine test its can be expected to meet performance and emission by optimizing the main parameters; the swirl ratio of intake port, injection timing and compression ratio.

  • PDF

EFFECT OF ADDITIVE ON THE HEAT RELEASE RATE AND EMISSIONS OF HCCI COMBUSTION ENGINES FUELED WITH RON90 FUELS

  • Lu, X.C.;Ji, L.B.;Chen, W.;Huang, Z.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • The effect of the di-tertiary butyl peroxide (DTBP) additive on the heat release rate and emissions of a homogeneous charge compression ignition (HCCI) engine fueled with high Research Octane Number (RON) fuels were investigated. The experiments were performed using 0%, 1%, 2%, 3%, and 4% (by volume) DTBP-RON90 blends. The RON90 Fuel was obtained by blending 90% iso-octane with 10% n-heptane. The experimental results show that the operation range was remarkably expanded to lower temperature and lower engine load with the DTBP additive in RON90 fuel. The first ignition phase of HCCI combustion was observed at 850 K and ended at 950 K while the hot ignition occurred at 1125 K for all fuels at different engine working conditions. The chemical reaction scale time decreases with the DTBP addition. As a result, the ignition timing advances, the combustion duration shortens, and heat release rates were increased at overall engine loads. Meanwhile, the unburned hydrocarbon (UHC) and CO emissions decrease sharply with the DTBP addition while the NOx emissions maintain at a lower level.

MODELING OF DIRECT INJECTION DIESEL ENGINE EMISSIONS FOR A QUASI-DIMENSIONAL MULTI-ZONE SPRAY MODEL

  • Jung, D.;Assanis, D.N.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.165-172
    • /
    • 2004
  • Phenomenological models for direct injection diesel engine emissions including NO, soot, and HC were implemented into a full engine cycle simulation and validated with experimental data obtained from representative heavy-duty DI diesel engines. The cycle simulation developed earlier by Jung and Assanis (2001) features a quasi-dimensional, multi-zone, spray combustion model to account for transient spray evolution, fuel-air mixing, ignition and combustion. In this study, additional models for HC emissions were newly implemented and the models for NO, soot, and HC emissions were validated against experimental data. It is shown that the models can predict the emissions with reasonable accuracy. However, additional effort may be required to enhance the fidelity of models across a wide range of operating conditions and engine types.

A Study on the Effects of NOx Reduction for the Tandem System (Tandem 시스템의 NOx 저감 효과에 관한 연구)

  • Nam Jeong-Gil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.645-653
    • /
    • 2005
  • The effects of a WI(Water Injection) at the intake Pipe and an urea injection at the exhaust pipe for a 4-cylinder DI(Direct Injection) diesel engine were investigated experimentally The water quantity was controlled by temperature of intake manifold and MAF(Manifold Air Flow). In addition, the urea quantify was controlled by NOx quantify and MAF. Effects of WI system, urea-SCR system and tandem system were investigated for with and without EGR(Exhaust Gas Recirculation). As the results. the SUF(Stoichiometric Urea Flow) and NOx map were obtained. In addition, NOx results can be visualized with engine speed and engine load. It was concluded. therefore, that the NOx reduction effects of the tandem system without the EGR were more than those with the EGR base engine.

Various Injection Conditions and Fuel Control of an LPG Liquid Injection Engine (다양한 분사조건과 LPG 액상분사엔진의 연료량 제어)

  • Sim Hansub
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.28-35
    • /
    • 2005
  • Fuel injection rate of an injector is affected by various injection conditions such as injection duration, fuel temperature, injection pressure, and voltage in LPG liquid injection systems for either a port-fuel-injection(PFI) or a direct injection(DI) in a cylinder. Even fuel injection conditions are changed, the air-fuel ratio should be accurately controlled to educe exhaust emissions. In this study, correction factor for the fuel injection rate of an injector is derived from the density ratio and the pressure difference ratio. A voltage correction factor is researched from injection test results on an LPG liquid injection engine. A compensation method of the fuel injection rate is proposed for a fuel injection control system. The experimental results for the LPG liquid injection system in a SI-engine show that this system works well on experimental range of engine speed and load conditions. And the fuel injection rate is accurately controlled by the proposed compensation method.

Development of Medium-Duty Diesel Engine with CP3.3 Common Rail - Concept Study and Initial Experimental Work (커먼레일 중형 디젤엔진의 개념설계 및 초기 시험개발)

  • 김만영;허행표;김창일;최규훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.69-74
    • /
    • 2003
  • An experimental feasibility study of the E3.9 engine with CP3.3 and EDC7C was conducted to understand the initial performance and the possibility for EURO-III regulation. ID cycle simulation for concept study was conducted using the BOOST. Also, some basic investigations through such various parameters as injection timing and rail pressure have been carried out to find the feasibility on EURO-III ESC mode. Based on the results, the feasibility of the E3.9 engine for EURO-III characteristics such as performance, emissions, and fuel economy was demonstrated.

Development of DME Engine Using 3.9 Liter Diesel Engine with Mechanical Type Fuel System (3.9 리터 기계식 디젤 엔진을 이용한 DME 엔진 개발 연구)

  • JANG, JINYOUNG;WOO, YOUNGMIN;KIM, GANGCHUL;CHO, CHONGPYO;JUNG, YONGIN;KO, AHYUN;PYO, YOUNGDUG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.3
    • /
    • pp.307-313
    • /
    • 2020
  • The 3.9 liter diesel engine with a mechanical fuel injection system was converted to di-methyl ether (DME) engine and performance optimized. In order to switch to the DME engine, the plunger of the high pressure fuel pump was replaced and the diameter of the injector nozzle was increased. Through this, the disadvantage of DME having low calorific value per volume can be compensated. To optimize the performance, the number of injector nozzle holes, injector opening pressure, and fuel injection timing were changed. As a result, the optimum number of injector nozzle holes was 5, the injector opening pressure was from 15 MPa to 18 MPa, and the injection timing was 15 crank angle degree before top dead center (CAD BTDC). The power was at the same level as the base diesel engine and nitrogen oxides (NOx) emissions could be reduced.

Emissions and Combustion Characteristics of LPG HCCI Engine (LPG 예혼합 압축 착화 엔진의 배기가스 및 연소 특성)

  • Yeom, Ki-Tae;Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.149-156
    • /
    • 2006
  • This paper investigates the steady state combustion characteristics of LPG homogeneous charge compression ignition(HCCI) engine with variable valve timing(VVT) and dimethyl ether(DME) direct injection, to find out the benefits in exhaust gas emissions. VVT is one of the attractive ways to control HCCI engine. Hot internal residual gas which is controlled by VVT device, makes fuel is evaporated easily, and ignition timing is advanced. Regular gasoline and liquefied petroleum gas(LPG) were used as main fuel and dimethyl ether(DME) was used as ignition promoter in this research. Operating range and exhaust emissions were compared LPG HCCI engine with gasoline HCCI engine. Operating range of LPG HCCI engine was wider than that of gasoline HCCI engine. The start of combustion was affected by the intake valve open(IVO) timing and the ${\lambda}TOTAL$ due to the latent heat of vaporization, not like gasoline HCCI engine. At rich operation conditions, the burn duration of the LPG HCCI engine was longer than that of the gasoline HCCI engine. CAD at 20% and 90% of the mass fraction burned were also more retarded than that of the gasoline HCCI engine. And carbon dioxide(CO2) emission of LPG HCCI engine was lower than that of gasoline HCCI engine. However, carbon oxide(CO) and hydro carbon(HC) emission of LPG HCCI engine were higher than that of gasoline HCCI engine.

Effect of the Boost Pressure on Thermal Stratification on HCCI Engine Using Multi-Zone Modeling (Multi zone Modeling을 이용한 흡기관내의 과급이 온도성층화를 갖는 예혼합압축자기착화엔진에 미치는 영향에 관한 연구)

  • Kwon, O-Seok;Lim, Ock-Taeck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.4
    • /
    • pp.248-254
    • /
    • 2009
  • The HCCI engine is a next generation engine, with high efficiency and low emissions. The engine may be an alternative to SI and DI engines; however, a pressure rise rate is a major limitation for high load range and power reduction. Recently, we were able to reduce the pressure rise rate using thermal stratification. Nevertheless, this was insufficient to produce high power. In this study, the reduction of the pressure rise rate using thermal stratification was confirmed and the HCCI engine power was increased using the boost pressure. The rate and engine power were produced by CHEMKIN and modified SENKIN. As a result of increasing the boost pressure, a higher IMEP was attained while the pressure rise rate increased only slightly in the HCCI with thermal stratification.

The Effect of EGR on Exhaust Emissions in a Direct Injection Diesel Engine (직분식 소형 과급 디젤엔진에서 EGR이 배기배출물에 미치는 영향)

  • Jang, Se-Ho;Koh, Dae-Kwon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.188-194
    • /
    • 2005
  • The direct injection diesel engine is one of the most efficient thermal engines. For this reason DI diesel engines are widely used for heavy-duty applications. But the world is faced with very serious problems related to the air pollution due to the exhaust emissions of diesel engine. So, that is air pollution related to exhaust gas resulted from explosive combustion should be improved. Exhaust Gas Recirculation(EGR) is a proven method to reduce NOx emissions. In this study, the experiments were performed at various engine loads while the EGR rates were set from $0\%$ to $30\%.$ The emissions trade-off and combustion of diesel engine are investigated. The brake specific fuel consumption rate is very slightly fluctuated with EGR in the range of experimental conditions. The ignition delay increased with increasing EGR rate. The maximum value of premixed combustion for the rate of heat release is increased with increasing EGR rate. NOx emissions are decreased with increasing EGR rate at high load and high speed. It was found that the exhaust emissions with the EGR system resulted in a very large reduction in oxides of nitrogen at the expense of higher smoke emissions.